

A UML-BASED APPROACH TO THE MODELLING AND SUPERVISORY
CONTROL OF MANUFACTURING MACHINERY

B. Bordbar, L. Giacomini and D.J. Holding
1

1

Dept. of Electronic Engineering, Aston University, Aston Triangle, Birmingham B4 7ET, UK { b.bordbar, l.giacomini, d.j.holding} @aston.ac.uk

1. Introduction
The paper addresses the problem of designing the co-
ordination logic for the supervisory control of multi-
component systems, such as manufacturing machinery.
The main objective is to take data describing the
behaviour of each type of component and the "rules" that
govern the co-ordination and synchronisation of the
components and to synthesise appropriate coordination
logic and a verifiable model of the system. The premise
is that the machine/plant operation can be split into a set
of phases or motions, with continuous regulatory control
through each of the phases and logical decision, which
determine the next phase or motion, computed at the end
of each phase. Our approach combines a structured
methodology based on UML (Unified Modelling
Language) [1,3] with qualitative techniques that provides
reasoning and validation tools.

Based on UML design procedure, we start by analysing
the UML Use Cases, which are detailed description of
the system objectives and component behaviours. This
enables us to construct abstract continuous and discrete
event models of the components and the
synchronisation logic. In UML the dynamics of objects
are described using a form of state diagram known as a
Statechart [4]. Although Statecharts are very popular
and are well supported by implementation tools, they
currently lack analytic capabilities and thus software
tools cannot ensure the functional consistency of the
overall design. To facilitate reasoning about the
asynchronous concurrent behaviour of the components
we replace the Statechart by an analytic Petri net [2,5]
model which can be analysed using Petri net theory. A
novel algorithm is provided to synthesis the
synchronisation logic and create a Petri net model of
the composite controlled system. Exploring the
behaviour of this Petri net helps in verification of the
safety of the plant.

Our approach is explained by modelling of a typical
wrapping machine.

2. UML based design
Consider the design of a controller for a simplified
production line comprising loosely-coupled
independently-driven mechanisms such as conveyor

belts, wrapping film feeders, film sealers and cutters as
shown in Fig. 1. The major modules of the system are
controlled individually and independently and perform
motion profiles corresponding to different tasks.
Supervisory (discrete event) control is to be used to
synchronise the different parts together.

2.1 Use Case
The UML design procedure [1] starts with the study of the
Use Cases which are detailed written descriptions of ‘what
the objectives are’ and 'how the job is carried out'.
Studying the use cases enables the designer to recognise
different 'key agents' of the system, known as Objects in
UML terminology. For example, the wrapping system of
Fig. 1 is made of 4 objects: the belt, the foil roll
unwinding device (film), the welder, the cutter. The
product (JOB) and the foil that carries a printed tag
(TAG) are identified with their supports, i.e. the belt and
the film, respectively. JOB and TAG are displaced with
respect to the belt and film.
Let us examine the Belt Use Cases. When the JOB
arrives (new JOB) in the proximity of a decision point
sensor (dp), the state of the TAG is evaluated. If the TAG
is at decision point the wrapping can take place (go).
However, if the TAG is still outside the wrapping area,
the JOB will stop, waiting for the TAG to arrive at its
decision point (abort operation). When the TAG arrives
(new TAG), the JOB is restarted (start leading to the
wrapping state). When JOB and TAG are both in the
wrapping state, the packaging foil is formed into a tube
via a funnel, and a longitudinal sealing roller welds the
two edges of the film together. The tube is sealed between
packs by a lateral sealer (welder) and the wrapped product
exits from the wrapping area (exit leading to the state
out). The sealed products are then separated by a cutting
machine (cutter) to produce individually packaged
products, and the whole cycle restarts.

Similar behavioral models have been derived for the Film
(TAG), Welder and Cutter. The welder and film, and
film and cutter, are synchronised by applying a heuristic
similar to the one between the belt and film.

2.2 Class diagrams
Considering common features and operations of key
agents, objects are extrapolated into collections called

Classes. Each class has a set of attributes representing
the state of an object and a set of operations representing
the actions that the class can perform. In the description
in Section 2.1 (Use Case for the production line of Fig.
1), the underlined terms represent the classes. The
product to be wrapped, JOB, is identified with the belt.
The printed film and the motor driving the unwinding
are identified with the Film object. The terms in bold
typeface are the attributes of the classes (for the Belt,
B_dp, B_wait, B_wrap, B_out; F_dp and similarly for
the class Film). The terms in italic typeface are the
operations of the class.
Classes can be organised in a graph (or a collection of
graphs), to build a 'class diagram', that describes the
static relationship between the classes.

3 Dynamic Model
The UML dynamic model describes behavioural aspects
of the object classes. In this paper a Petri net replaces
the UML dynamic model (for general information
regarding Petri nets, we refer to [5]).
First we derive Petri nets for each of the classes by
assigning one place to each attribute and one transition
to each operation. Places associated with attributes that
an operation sets to False (or True) form inputs (or
outputs) of the associated transition. In this particular
application, the dynamic models of the classes are all
structured as shown in Fig. 2. We create an initial
marking for each instantiated object by considering the
initial state of the corresponding components of the
production line.

4 Precedence relationships and synchronisation.
To maintain the precedence relationships and the
synchronisation objectives specified in the Use Case we
use the Use Case information to directly construct a
directed graph which enumerates all desirable states and
their relationships. The resulting Graph of Desirable
States (GDS) embraces all we expect the system to do,
and identifies any unwanted or undesirable behaviour
which must be prohibited.
Assume that a system is made of m objects, and that
the dynamic model of each object is a Petri net that will
form a component of the composite design. Typically,
the objects are synchronised two at a time, until the
compositional approach encompasses the whole system.
For conciseness, we will focus on the interaction and
synchronisation of the Belt and Film.
Let the component Petri nets be bounded and live and
represented by (NB, mB

0), (NF, mF
0), where mB

0, mF
0

denote the initial markings of Belt and Film. Let R∞(Ni,

mi
0), denotes the set of all reachable markings of the Petri

Net (Ni, mi
0), i = B,F. For each mi ∈ R∞(Ni, mi

0), let
enabled(mi) denote the set of all enabled transitions of Ni
under the marking mi. Each node of GDS is labelled by a
3-tuple of the form a = (mB, mF, U) where mB, mF are
reachable markings of the components NB, NF and U is the
set (possibly empty) of undesirable enabled transitions
under mB, mF, as derived from the use case. Thus U is a
subset of enabled(mB) ∪ enabled(mF). For the node
labelled with a = (mB, mF, U) we shall write m(a) = (mB,
mF) and U(a) = U.

The GDS can be generated as follows:
Step1: Create the first node, which shall be referred to as
the initial node, and label it with a0 = (mB

0, mF
0, U0)

where U0 is the (possibly empty) subset of enabled
transitions which are undesirable.
Step2: While there is a node a that Step2 is not applied
to, do the following:
 Let a = (mB

a, mF
a, Ua). For each t ∈ enabled(mB

a),
where t does not belong to Ua create a “child” node b=
bt = (mB

b, m
F

a, Ub), where mB
a [NB, t> mB

b and, according
to the use case (see Section 2.1), Ub is the set of enabled
transitions under mB

b, mF
a that are to be prevented from

firing. Then the node a is connected to each child bt via
an edge which is labelled by t. To preserve the uniqueness
of the labelling of nodes, for each child bt if there is
another node c with the same labelling as bt, then bt is
cancelled and edge input to bt is diverted into c.
Analogous procedure applies for each t ∈ enabled(mF

a).

For example, at state (B_out, F_dp), the set of enabled
transitions { B_new, F_ab, F_go} . Because of the Use
Case, if the TAG is at decision point but the JOB is still
out of scope, then we want to decelerate the film, until
complete rest if needed. Thus the transition F_go is
undesirable: U = { F_go} . Proceeding in this way the
graph in Fig. 3 is built.

Figure 3. GDS
The resulting GDS condenses, in a Petri Net style, all the
information about the dynamics of the two co-operating

B_go

B_w
r B_ex .

B_out

B_st

B_new

B_wa

B_ab

Fig. 2: PN for the class Belt Fig. 1 : Production Line

B_dp

(B_out, F_out); ∅

(B_dp, F_out); { B_go}

(B_wa, F_out); { B_st}

(B_wa, F_dp); { F_ab}

(B_wr, F_dp); { F_ex, F_ab}

(B_out, F_dp); { F_go}

(B_wr, F_wr); ∅

(B_out, F_wr); { B_new}

(B_out, F_wa); { F_st}

(B_dp, F_dp); { F_ab; B_ab}

(B_dp, F_wr); { B_ab; F_ex}

(B_wa, F_wr); { F_ex}

(B_wr, F_out); { F_new}

(B_wr, F_wa); { B_ex}

(B_dp, F_wa); { B_ab}

B_new F_new

B_ex F_ex

B_st

B_st

B_go

B_go

B_go

B_new F_ab B_ab F_new

F_new

F_go

F_go

B_new

F_st

F_st

F_ex B_ex

F_go

a0

a1 a2

a3 a4

a5
a6 a7

a8
a9

a10 a11

a12

a13 a14

subsystems. The GDS can reveal problems with a
design: for example, if there is a node a of GDS with no
output then our design of the system expects a deadlock,
which is anomalous.

5 Connecting the components Petri nets
Consider the task of interconnecting the dynamic
models, to create a new composite system with the
desired co-ordination and synchronisation as described
in the Use Cases. The composition is performed using
the information in the GDS concerning desirable and
undesirable transitions.

Synthesis Method: To ensure the correct evolution of
the composite net it is necessary to create a critical
section for the synchronisation logic associated with
those nodes that have non-empty sets of undesirable
transitions. More formally, for each t ∈ ∆ (∆ denotes the
union of all undesirable transitions U(a)) create a new
place s(t) as an input to t and for each a ∈ { a | t ∈
D(a)} , where D(a), the set of all enabled transitions that
are not undesirable, create a new transition proxy(t ; a)
as an input transition to s(t). Connect all places marked
under m(a) to proxy(t; a) with double direction arrow.
To control the associated critical section, create a place
CtrlSec(a) occupied by a token. Connect CtrlSec(a) as
an input to all proxy(t; a) and connect t ∈ D(a) as an
input to CtrlSec(a). For each t∈ ∆, if there are a ≠ b
such that t is input to both CtrlSec(a) and CtrlSec(b),
then cancel a and divert all inputs (output) transitions of
a which are not input (output) to b into inputs (outputs)
of b, respectively.

Applying the above procedure to the Petri Nets of Belt
and Film, i.e. component Petri net (NB, mB

0), (NF, m
F
0),

and using the GDS in Fig. 3, we generate a rather
complex composite Petri Net, i.e. Petri net (N, m0),
which performing exactly the tasks required. From that
design, standard net reduction techniques have been used
to simplify the net without changing its functionality.
The result of this procedure is the Petri Net in Fig. 4.

6 Evaluation
The Petri Net in Fig. 4, is deadlock free and bounded. Its
reachability graph has 15 states which match the states in
the GDS, is straightforward to verify that the synthetised
Petri Net does what required. In general, such
verificationis straightforward using a model checker
such as DesignCPN. The design in figure 4, has been
used to design the control strategy for a Matlab (vers.
5.3) model and the outcome of a simulink experiment is
shown in Fig. 5, which demonstrates correct functional
behavior.

7 Conclusions
This paper has presented an integrated approach to UML
for modelling and analysing discrete event controllers

for real-time manufacturing systems. It has shown that
Petri-net theory can be used to improve the representation
and analysis of the dynamic model of such systems,
making the design engineer more confident that the model
accurately represents the system. Also, it has shown that
UML Use Case information and compositional Petri net
techniques can be used to design the co-ordination and
synchronisation logic for such systems. The methods and
algorithms presented in the paper facilitate the automatic
design of the synchronisation logic, and open the
possibility of scalable designs for large scale or
compositional systems. The composite Petri-net model
synthesised using these techniques can be used to
implement a controller based on supervisory control
theory.

0 1 2 3 4 5 6
0

1

2

3

4

5

t[sec]

b
e
lt
 s
ta
te

0 1 2 3 4 5 6
0

1

2

3

4

5

t[sec]

fi
lm
 s
ta
te

arrival of first TAG

arrival of second JOB arrival of first JOB

arrival of second TAG

Acknowledgements
This work was supported by EPSRC (UK) Grant
GR/L31234.

References
1. Booch, G., J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, 1999.
2. Desrochers, A.A. and R.Y. Al-Jaar, Applications of
Petri Nets in Manufacturing Systems, IEEE Press, 1995.
3. Douglass, B.P., Doing Hard Time. Developing Real-
Time Systems with UML, Objects, Frameworks, and
Patterns, Addison Wesley, 1999.
4. Harel, D.: Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming,
Vol. 8, pp. 231--274, 1987.
5. Murata, T., Petri Nets: properties, analysis and
applications, Proceedings of the IEEE, vol. 77, No.4, pp.
541-580, 1989.

Figure 5: States of Film and Belt in the chart: 1=_out,
2=_dp, 3=_wa, 4=_wr.

Figure 4: Petri Net for the synchronisation of Belt and
Film.

