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Abstract. Model Transformations can be used to bridge the gap be-
tween design and analysis technical spaces by creating tools that allow a
model produced by a designer to be transformed to a model suitable for
conducting automated analysis. Such model transformations aim at al-
lowing the designer to benefit from the capabilities provided by analysis
tools and languages. If the designer who is not a formal method expert
is to benefit from such tools, the outcome of the analysis should also be
transformed to the language used in the design domain.
This paper presents a study involving UML2Alloy, a tool for transforming
UML models in form of UML class diagrams which are augmented with
OCL constraints, to Alloy. The conversion allows analysis of UML mod-
els via Alloy, to identify consistencies in those UML models. We present a
method of automatically creating a model transformation based on the
original UML2Alloy transformation. The new transformation converts
Alloy instances into the UML equivalent object diagram. The current
technique is presented with the help of an example, along with a proto-
type implementation using the QVT standard.

1 Introduction

Model Driven Architecture (MDA), among other things, allows bridging the gap
between technical spaces and domains [21, 12]. For example, MDD has been
extensively used to allow analysis of UML models by transferring UML models
to formal languages, which in turn can be used for conducting various types
of analysis [6, 18, 11, 2]. One of the motivations behind such approaches is to
assist the designer who works with UML to benefit from the advantages of other
languages. For example, UML2Alloy [3] transforms models involving UML class
diagram and OCL to the Alloy language. Then, Alloy [8] is used to analyse the
model for identifying inconsistencies in the design. For example, in case that
there is an inconsistency between various parts of the design, Alloy can produce
a counter-example helping to reveal the source of inconsistency. Identifying such
inconsistencies allows improving the design to produce better software at ear-
lier stages of software development. UML2Alloy has been successfully applied
to various domains including Agile Manufacturing [4], Security [7], and Access
control [2].

To fulfil the vision of bridging the gap between design and analysis technical
spaces, there is a clear need to transfer the outcome of the analysis back into



the design space. In other words, a design model must be transformed to a
language suitable for analysis, and after conducting analysis the result must be
transformed back to the design space. Therefore the designer can both produce
a model in the design space and receive the feedback of analysis in the design
space. In case of UML2Alloy if a counter-example is found in analysis, it must
be transferred to a UML object-diagram. That object diagram is an instance of
the class diagram in the design space and represents a violation of a property
of the system. Otherwise, the developer must be an expert in two languages, in
this case Alloy and UML.

UML2Alloy has been shown to be a complex model transformation, [3]. Defin-
ing a transformation from Alloy to UML to carry the outcome of analysis con-
ducted by Alloy to an object diagram has proved to be challenging too. Firstly,
the transformations from UML to Alloy and from Alloy to UML are not inde-
pendent. The transformation from instances of the Alloy models to UML must
result in an instance of the original UML model, i.e. the created object diagram
must comply to the class diagram. Secondly, the reader may think that a bi-
directional [19] model transformation would solve the problem. This is not the
case, as the second transformation is between the instances of the models that are
transformed by the original transformation from UML to Alloy. In other words,
the first transformation is carried out at the M2 layer of MOF [15] hierarchy
while the second transformation is carried out at the M1 layer.

In this paper we shall present a method for automatically generating the sec-
ond transformation from the first transformation, i.e. the second transformation
which converts the Alloy instance models (analysis) to the original UML form is
created automatically from the transformation that maps UML to Alloy models
in the first place. We use an off-the-shelf implementation of the Queries Views
Transformations (QVT) [16] standard to implement the transformation genera-
tor, as well as for the generated transformation. This enables UML developers
to harness the power of UML as well as the analytical support of Alloy, hence
truly bridging the gap between the two domains.

This paper is structured as follows, in the next section, relevant background
information is given. Following this, we present the motivation for this work
in Section 3. An outline of our solution with the help of an example and a
prototype implementation are presented in Section 4. The paper concludes with
a discussion of the solution and related work.

2 Background

2.1 Alloy for the Analysis of UML Models

The Unified Modelling Language (UML) is widely accepted by the software
engineering community as the de facto standard for the design, implementation
and documentation of systems in industry. However, the UML is not intended
to support analysis and reasoning of the models created using it. Analysing
a model can be essential in identifying the design flaws and removing them at



earlier stages of the development process. For this purpose, a number of proposals
have been developed that advocate the transformation of UML models to well-
established formalisms for the purpose of analysis. In particular, Evans et al.
[6] propose the use of Z [26] as the underlying semantics for UML. Snook and
Butler [18] suggest the use of B [1], while Kim [11] transforms UML models to
Object-Z, by defining a mapping from a subset of the UML meta model to the
Object-Z meta model.

In [2], we advocate the formalisation of a subset of the UML, with the help
of the Alloy language [8]. Alloy is an increasingly popular declarative textual
modelling language based on first-order relational logic. The Alloy language is
supported by a tool, the Alloy Analyzer, which provides support for fully auto-
mated analysis of Alloy models, with the help of SAT solvers. The tool provides
the capability to simulate, check assertions and to debug a model. In simulation,
the tool produces an instance of the model that conforms to the constraints of
the system. To check if an assertion (i.e. a statement expressed in first-order
logic that captures a requirement) holds according to the specification, the tool
attempts to generate an instance that invalidates the assertion. To debug over-
constrained models, the tool can identify which elements of the model specifi-
cation are hindering the generation of instances [17]. Alloy has been used for
analysing a wide number of protocols and systems [9, 10, 5]. Specifically, Jack-
son and Sullivan [9] have analysed COM architecture and Khurshid and Jackson
[10] have analysed consistency of the International Naming Scheme (INS). Den-
nis et al. [5] have used Alloy to analyse a radiation therapy machine, exposing
flaws in the original design of the system.

In order to automate the transformation from UML to Alloy, tool called
UML2Alloy [2], has been developed which transforms a subset of UML class di-
agrams and OCL constraints into the Alloy language. UML2Alloy employs the
SiTra Model Transformation framework to carry out the transformation. The
tool works by transforming a UML class diagram with OCL constraints into the
Alloy language and interfaces with the Alloy Analyzer, using the Alloy Ana-
lyzer API to automatically produce an instance, which conforms to the model.
The method presented in this paper can be applied to produce UML object dia-
grams from the Alloy instances, such as counterexamples produced by the Alloy
Analyzer.

2.2 UML Object Diagram Standard

Modeling standards (or specifications) such as MOF, EMOF [14], EDOC [13]
are defined for the creation of software as models. Models in such languages are
expressed at different layers, and layers are normally described by another layer.
For example, in the MOF hierarchy there are four layers. At the highest layer
(M3), MOF is defined. One layer below M3 is UML language specification; M2
is the UML meta-model. UML Models are created at the M1 layer to represent
a system under development. In the UML standard, the M0 layer is used for
run-time instantiations of a modeled system. In this paper, we use the M0 layer



to represent instances of a M1 model. This is so we can create a model transfor-
mation at that level. A similar discussion on extending the layers relationship in
UML is made in [24].

3 Description of the Problem

UML2Alloy is a tool to automatically analyse UML Class Diagrams with OCL
constraints. This is achieved by defining a mapping between the UML meta
model and the Alloy meta model (w in Figure 1). The tool works by converting
the UML model to an equivalent model in the Alloy language (x in Figure 1)
and using the Alloy Analyzer API it carries out the analysis. Some analysis is
produced in the form of Alloy instances, a form the user is not familiar with.
Standards based tools support the UML language exclusively and are often-
times used as an Integrated Development Environment. UML tools usually do
not support analysis natively but could be used to view and modify analysis
produced externally, where it is in standard UML form. Using UML2Alloy and
a conversion of Alloy instances, the analysis could then be used as part of the
normal development process.
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Fig. 1. Multiple layers in UML2Alloy. Horizontal arrows represent transformation, ver-
tical arrows show instance-of relationship.

The key difficulty in converting Alloy instances, back to UML instances (z
in Figure 1) is the inherent semantic differences between UML and Alloy. In-
stances in Alloy are not naturally instances of the originating UML model- some
information is “lost in transformation”. An example of this semantic difference
between UML and Alloy is where the attributes and associations of a UML model
are converted to Alloy fields. Therefore, converting an Alloy instance back to an
instance of the originating UML model would require knowledge of precisely how
attributes and associations were converted to fields.

Although it may be possible for hand conversion of instances to infer the
mappings manually (via inspection) the process would be time consuming, te-
dious and error prone. The instances produced by Alloy could be both large and
numerous, so not suitable to manual conversion. As a result there is a need to



automate the conversion of Alloy instances into UML instances, we propose a
model transformation be used for the conversion, z in Figure 1. As the meta
models (UML Class Model and Alloy Model in Figure 1) can change, the model
transformation between them should ideally be generated automatically, based
on the UML2Alloy transformation.

Another problem with manual conversion or even manually created model
transformation is the accuracy of the conversion. In hand-converted models, mis-
interpretation of the original transformation may mean instances are converted
incorrectly. Similarly, a manually created model transformation is prone to de-
veloper error, resulting in many wrongly converted instances of analysis. Our
solution creates the analyses (instance) transformation automatically, based on
the execution trace of the original UML2Alloy model transformation. This leads
to a higher degree of confidence that there is consistency between the two trans-
formations. A result of using model transformation throughout allows for an
implementation in an MDA-compliant tool.

4 Outline of the Solution

Figure 2 depicts the enumerated steps of our solution to convert Alloy instances
to UML instances. Figure 1 is related as follows, w is “UML2Alloy” and z is the
instance converter “Alloy instance converter” of Figure 2. Our solution centres
on an initial transformation in UML2Alloy, where given a UML model an Alloy
model will be produced (Step 1 in Figure 2). The resulting Alloy model can be
automatically analysed, with some of the analysis produced as Alloy instances
(Step 2 in Figure 2). Using the trace of the first UML2Alloy transformation, we
create another model transformation (Step 3 in Figure 2). This second transfor-
mation is used on Alloy instances, to convert them to UML instances (Step 4 in
Figure 2).
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Fig. 2. Outline of the approach

Step 1: The first transformation, UML2Alloy is executed on a UML model,
to produce an Alloy Model and a transformation trace. The properties of the
resulting Alloy model can be automatically evaluated.

Step 2: In this step, UML2Alloy uses the Alloy Analyser API to automat-
ically analyse the Alloy model. Two general kinds of analysis are performed to



produce instances: simulation and assertion checking. Simulation produces an
arbitrary instance, that conforms to the model constraints. Assertion checking
will allow the user to verify a property of the model holds, with an instance
produced (counter example) if the property does not hold.

Step 3: The next stage is to create the Alloy to UML instance converter.
We propose that such a conversion can be achieved using MDA techniques: by
creating a transformation. We use the trace of the original UML to Alloy model
transformation to create the second instance transformation. In effect, the trace
of the first transformation (executed in Step 1) is used as the specification of the
second transformation (used in Step 4). Each trace instance, that has recorded
a conversion in the first transformation is converted to a rule of the second
transformation. Further details of can be found in Section 4.2.

Step 4: The second transformation (Step 4 in Figure 2) can be executed,
converting Alloy instances to UML instances. The resulting instance can then
be used in standard UML tool support.

4.1 Example

In this section we introduce an example UML model to illustrate the solution
and used later to explain the implementation. Consider the UML Class Dia-
gram with OCL constraints shown in Figure 3a. Using the model transformation
UML2Alloy on this UML model, an Alloy model is produced shown in Figure
3b. For example, the UML class “Person” is converted to the Alloy signature
“Person” (line 1, Figure 3b). Class Attributes become Fields of the Signature,
for example the “age” attribute of “Person” in UML becomes the “age” field
of the “Person” signature (line 2, Figure 3b). The navigable UML association
between “Person” and “BankAccount” becomes the fields and facts on lines 3, 6,
8-10 in the Alloy model. The conversion of associations and attributes to fields
highlights a major semantic difference between the formalisms, see section 3 for
further discussion. Finally the OCL constraint of the model is converted to the
facts in the Alloy model (line 12).

(a) UML model

1 some sig Person{
2 age : one Int,
3 ba : lone BankAccount}
4  
5 some sig BankAccount{
6 per : one Person}
7  
8 fact{per in BankAccount lone->one Person}
9 fact{ba in Person one->lone BankAccount}

10 fact{per = ~ba}
11  
12 fact{all self:BankAccount|int self.per.age>18}

(b) Output of
UML2Alloy, using (a)

(c) Alloy
instance of (b)

Fig. 3. Multi-level Model Transformation, with examples

The Alloy model can be simulated using the Alloy Analyzer to produce one
(often many more and larger) Alloy instances such Figure 3c. The UML2Alloy



transformation produces a trace. So in the above example, a trace is created
when Class “Person” is converted to sig “Person”. The trace of class to sig also
refers to another trace, attribute “age” to field “age”.

Using this information, the transformation Trace2MT will create the instance
transformation (Step 3 in Figure 2). Based on the trace, the first rule created
is PersonSig2PersonClass, which takes an instance of the “Person” signature
in Alloy and converts it to an instance of the UML “Person” Class. Person-
Sig2PersonClass will be created to invoke another rule AgeField2AgeAttribute,
which converts instances of the Alloy “age” field to instances of the UML “age”
attribute. The rest of the model transformation (Step 4 in Figure 2) is created
by repeating the process for every trace (produced in Step 1, Figure 2). Once the
transformation has been created, Alloy instances can be automatically converted
to UML instances.

4.2 Implementation

In this section we present an MDA centric implementation of our solution (Step 3
in Figure 2), by creating a prototype Model Transformation. The main artefact
of the implementation is created using the QVT [16] standard, created using
SmartQVT [20]. Trace2MT (Step 3 in Figure 2) converts the trace of a first
transformation in UML2Alloy (Step 1 in Figure 2) into a second transformation
that converts a given Alloy instance into a UML object diagram (Step 4 in
Figure 2). In the implementation, the second generated transformation is also
in the form of a QVT model transformation.

The rules of Trace2MT are defined between the trace meta model and the
QVT Operational [16] meta model. The trace meta model is instrumental to
this implementation, as it is the basis for the generated model transformation.
We have defined a trace meta model based on the need to generate transforma-
tion rules. The pertinent features of our trace meta model for this purpose are
preservation of order of rule invocation as well as the hierarchy of rule invocation.

The important rules of Trace2MT are “first2entryoperation” and “trace-
inst2rule”, both invoked by the entry rule “itrace2operational”, which in turn is
invoked by the main entry point. The rule “first2entryoperation” converts the
first of the TraceInstance, into the main entry point (EntryOperation from [16])
of the generated model transformation. The rule “traceinst2rule” of Trace2MT
converts a given TraceInstace to a rule of the instance converter (MappingOp-
eration from the QVT meta model [16]).

Figure 4 depicts the trace meta model utilised in the implementation. The
ITrace class of the meta model is instantiated once in an execution of the
UML2Alloy transformation. The TraceInstance class is instantiated at rule ex-
ecution, whenever a UML element is converted to an Alloy element. The trace
model records all transformation execution, including transformation of primi-
tive types. The TraceInstance class records the source and destination value of
a mapping. Where one rule invoked another rule, a link is also created between
the two traces in TraceInstance. The information from the trace model is used
to build the “Alloy instance converter” from Figure 2.



Fig. 4. Trace meta model

5 Discussion and Related Work

In this paper we present a method to automatically generate the transformation
rules to convert Alloy instances to UML Object diagrams. This allows instances
generated in analysis using Alloy to be transfered back to the UML domain. The
presented method uses the trace of the UML2Alloy transformation to create rules
for the transformation of instances. In our method, the outcome of analysis is
presented is standard UML form, so it can be used in existing tool support. The
trace is used to create the model transformation and this allows us to avoid the
inherent differences between UML and Alloy and thus convert Alloy instance
back to UML automatically. Using trace data to generate the transformation
allows for a high degree of confidence in the consistency of the converter. The
generated transformation could be used to convert many, large complex Alloy
instances back to UML form automatically.

If the original UML model changes, UML2Alloy can be used to automati-
cally create an equivalent Alloy model. Any previously created transformation
of instances would no longer be valid, using the presented solution the transfor-
mation can be re-created automatically. We have presented an example of how
this solution could be implemented in a MDA-compliant tool and using only
model transformation. We have presented our solution in terms of UML2Alloy,
further research is required to understand where the reverse transformation is
appropriate for any given transformation. For example how and when to apply
the technique in the validation of other UML diagrams.

The work presented in this paper can be related to several different areas
within model driven development, but only a few of those are particularly rel-
evant to instance conversion for analysis. In [25, 22], discussion is on infering
model transformation rules using a manually created mapping between partic-
ular models i.e. model transformation rules from an example. The current ap-
proach differs in that rules are created top-down from a higher to a lower level
of abstraction and in using the trace of an existing model transformation. Also
relevant to the work presented here is [23], who introduce the concept of meta-
transformation. We utilise meta-transformation where input or output of model
transformation is model transformation in converting traces to model transfor-
mation. The work in [23] focuses on architectural, practical and conceptual issues
of creating such transformations.
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