
A Principled Approach to the Analysis of

Process Mining Algorithms

Phil Weber, Behzad Bordbar, and Peter Tiňo

School of Computer Science, University of Birmingham, B15 2TT, UK.
{p.weber,b.bordbar,p.tino}@cs.bham.ac.uk

Abstract. Process mining uses event logs to learn and reason about
business process models. Existing algorithms for mining the control-flow
of processes in general do not take into account the probabilistic nature
of the underlying process, which affects the behaviour of algorithms and
the amount of data needed for confidence in mining. We contribute a first
step towards a novel probabilistic framework within which to talk about
approaches to process mining, and apply it to the well-known Alpha
Algorithm. We show that knowledge of model structures and algorithm
behaviour can be used to predict the number of traces needed for mining.

Keywords: Business process mining, probabilistic automata, Petri nets.

1 Introduction

Business processes describe sets of related activities which are carried out to solve
a business problem, or produce a service or product. As a process is executed,
the systems involved will record information in log files. Process mining [7] uses
these logs to discover and analyse models of business processes.

As a simple example, consider the process in Fig.1. An order is received,
stock checked, and either the item picked from the warehouse, or the order
rejected. Despatch and billing take place in parallel, then payment may be chased
repeatedly, before the order is closed. Abstracting from detail, the ‘trace’ of a
single enactment of the process may be recorded as a string abdefggh. Process
mining algorithms use logs of traces to produce models such as this Petri net.

Various techniques exist, reviewed in [7]. Other than [3, 1], non-probabilistic
languages (e.g. Petri nets, BPMN) are usually used to represent processes. The
aim is usually to represent the control-flow structure in a model that is visually
understandable, using heuristics [10] or clustering [6, 2] to abstract from exces-
sive detail or noise. Probabilities are generally not represented, and algorithms
assume a ‘complete’ log, for some notion of completeness. Comparison of models
is by syntactic methods such as replaying logs or Petri net token behaviour [5].

Little work has been done on systematically analysing process mining algo-
rithms to discover their fundamental properties, or analysing the completeness
of logs. Yet these aspects are of critical importance to enable confidence that the
log is an adequate sample of the underlying behaviour, and thus in the accuracy

2 Phil Weber, Behzad Bordbar, and Peter Tiňo

a:Check

e:Bill

d:Desp. f:Paid?
b:Pick

g:Chase

h:Close

c:Reject

Fig. 1. Simplified Business Process for fulfilling an order.

of the mined model. While the core interest is in the control-flow of a process,
it must be appreciated that traces are generated randomly according to an un-
derlying probability distribution unknown to the process mining algorithm. Not
all activity sequences or decisions are equally likely, and their probabilities may
have a dramatic effect on the amount of data needed for mining.

This paper contributes a first step towards a novel probabilistic framework
within which to talk about approaches to process mining (section 2). We suggest
a radically new view on process mining algorithms, in which a process is viewed
as a distribution over traces of activities, and mining algorithms in terms of their
ability to learn such distributions. We use probabilistic automata as a unifying
representation, and compare models using distances between the probability
distributions which they generate.

As an illustrative example, we apply this framework in section 3 to the foun-
dational algorithm ‘Alpha’ [8]. Unlike previous methods, the framework allows
us to answer in a principled manner the question of the probability of identify-
ing the correct process from a given log of data. We show that a process model
can be broken into structures and the probability estimated of correct mining
of those structures, and thus of the original process model. Some experimental
results are presented in section 4, and section 5 concludes the paper.

2 Processes as Distributions over Strings of Symbols

Similar to the approach in [1], we view processes as probability distributions over
strings of symbols. Activities occur according to a “ground truth” process model
M which may be unknown. We consider only acyclic process models, and place
restrictions on processes equivalent to those used elsewhere, e.g. [8]: A process
has a single start task s and end task e; the events of activities’ occurrence are
atomic (take no time) and are recorded as they occur in a workflow log W ; and
the underlying process model is fixed. A sequence of activities from start to end
task is called a process trace. The log is therefore a multiset of traces.

Let Σ be an alphabet of symbols representing business activities. Process
traces are represented by strings {x ∈ Σ+}. M is therefore a stochastic regular
language, describing a probability distribution PM over Σ+. The probability
of trace x occurring is PM(x), such that

∑

x∈Σ+ PM(x) = 1. The set of valid
process traces is given by the finite support of PM. A process mining algorithm
can therefore be viewed as learning a probability distribution PM′ over strings,
to approximate PM, i.e. PM′(x) ≈ PM(x), ∀x ∈ Σ+. Learning is from the finite
sample W drawn i.i.d. from the distribution to be learnt, PM.

A Principled Approach to the Analysis of Process Mining Algorithms 3

For the purposes of analysis we use probabilistic deterministic finite automata
(PDFA) [9], which have the bare minimum needed to represent distributions
generated by business processes. A PDFA is a five-tuple A = (QA, Σ, δA, q0, qF),
where QA is finite set of states including single start and end states q0, qF ; Σ is
an alphabet of symbols; and δA : QA × Σ × QA → [0, 1] defines the probability
function governing transition between states. The probabilities on transitions
from a state sum to 1, and the transition function is deterministic: given a
current state and symbol, the next state is certain, and there is a unique state
path through A for any string x that it can parse. All states are accessible from
the initial state, and from any state, it is possible to reach the final state.

PDFA A generates a probability distribution PA on Σ+:

PA(x) = δA(q0, s0, qs0
) ×

(

n−2
∏

i=1

δA(qsi−1
, si, qsi

)
)

× δA(qsn−2
, sn−1, qF), (1)

where x is a string of symbols s0s1 . . . sn−1 which can be parsed by the automaton
to the unique final state qF , and qsi

denotes the state reached after symbol si is
parsed. PA(x) = 0 for strings which cannot be parsed.

Processes characterised in this way are equivalent to those represented by
sound Workflow Nets [8], with the addition of probabilities on transitions. The
restricted Hidden Markov Models used in [3] are similar in behaviour to our
PDFA, since each state is restricted to a single output activity.

3 An Illustrative Example — The Alpha Algorithm

In this section we use this framework to analyse the behaviour of the process min-
ing algorithm ‘Alpha’ with regard to the probability of it correctly re-discovering
the process structures in a known ground truth, from a given log file.

The Alpha algorithm [8] makes a single pass through a workflow log to iden-
tify which tasks directly follow each other. This information is used to infer three
basic relations between task pairs, which are used to construct a Petri Net:

– a → b (task b always follows a, never vice-versa),
– a # b (a and b never follow each other), and
– a ‖ b (both ab and ba occur in the log).

A single start and end place are assumed, and the remaining places inferred
using these relations. Two tasks are always related by →, →−1, # or ‖, and
these relations partition the set of tasks [8, Property 3.1]. Acting on a pair of
tasks, these relations also partition the set of all logs of n traces. Alpha is proven
to mine processes representable by a sub-class of Petri nets, from noise-free logs.

Business processes are composed of structures (Fig.2,3). For acyclic processes,
Alpha can discover sequences of tasks, exclusive (XOR) and parallel (AND) splits
and joins. We give examples of these structures and how they may be represented
by PDFA, and state the formulae for the probability of Alpha discovering them
from a log of n process traces.

4 Phil Weber, Behzad Bordbar, and Peter Tiňo

Fig. 2. Petri Net and PDFA fragments for Sequence a),b) and Parallel Split c),d).

We first state formulae for the probability of Alpha discovering each of the
basic relations, when acting on a log of n traces, based on the probabilities of
strings in the log. Let π(ab) be shorthand for PM(sΣ∗abΣ∗e), the probability of
ab occurring in a trace. We define πn(E) as “the probability of complex event E

holding true in a log of n traces”, and Pα(a →n b) as “the probability that Alpha
infers the relation a → b over n traces”, similarly for the other Alpha relations.
Alpha will then discover the basic relations with the following probabilities:

Pα(a →n b) =
(

1 − π(ba)
)n

−
(

1 − π(ab) − π(ba) + π(ab ∧ ba)
)n

, (2)

Pα(a #n b) =
(

1 − π(ab) − π(ba) + π(ab ∧ ba)
)n

, and (3)

Pα(a ‖n b) =1 −
(

1 − π(ab)
)n

−
(

1 − π(ba)
)n

+
(

1 − π(ab) − π(ba) + π(ab ∧ ba)
)n

. (4)

We next give exact formulae for the discovery of basic structures, and show
how these may be usefully simplified without loss of accuracy. Due to space
restrictions we do not provide full derivations; these will be published elsewhere.

3.1 Control-Flow Structures

Here we consider sequential activities, and exclusive and parallel splits and joins.

Sequential Activities: If a occurs, it is immediately followed in the model by
b (Fig.2). In the log, other parallel tasks may ‘interfere’, so the following will
hold: if a occurs in a trace, b will occur before the end of the trace. Discovery
simply requires discovery of the causal relationship a →n b (equation 2).

Splits and Joins: Alpha uses the relations →, # and ‖ between pairs of tasks to
locate places in the net, which characterises splits and joins as XOR or AND. As
the discovery of a relation is a complex event arising from Alpha’s interpretation
of a log of n traces, they are not independent: multiple relations may be inferred,
or not, from the log. Therefore to obtain exact probabilities for discovery of splits
and joins it is necessary to use the probabilities of sub-strings which ‘must’ and
“must not” be seen in the log, to build the formulae for larger structures.

A Principled Approach to the Analysis of Process Mining Algorithms 5

Exclusive Choice: XOR Split: An m-way XOR split (e.g. Fig.3 structure
A) occurs where there is a choice between m exclusive paths through the model
after task a, each path starting with a task {b1 . . . bm}. If a occurs in a trace,
then exactly one bi ∈ {b1 . . . bm} will be included in the remainder of the trace.

Fig. 3. Example Model as Petri Net and PDFA, Highlighting Structures.

To discover this split, Alpha must infer each a →n bi and each bi #n bj. So the
log must contain at least one of each of m sub-strings abi, none of the m ‘reverse’
strings bia, and none of m!

(m−2)! pairs of ‘post-split’ tasks. Let N, Y ⊂ Σ×Σ be the

set of task pairs which must not (resp. must) be seen in the log. Sn(X) → [0, 1],
where X ⊆ Σ ×Σ, is the probability of not seeing any of the |X | task pairs in n

traces, and for Xi = (ti, t
′
i) ∈ X, π(Xi) = π(tit

′
i). Using the “inclusion-exclusion”

principle for calculating the probability of intersecting events, applied to both
strings within a trace, and traces within a log:

Pα

(

a →n b1# . . .#bm

)

= Sn(N) −

i=m
∑

i=1

Sn(N ∪ {Yi})+

i,j=m
∑

i,j=1:i<j

Sn(N ∪ {Yi, Yj}) − . . . + (−1)mSn(N ∪ Y), where (5)

Sn(X) =
(

1 −

i=|X|
∑

i=1

π(Xi) +

i,j=|X|
∑

i,j=1:i<j

π(Xi ∧ Xj) . . . + (−1)|X|π(X1 ∧ . . . ∧ X|X|)
)n

.

Parallel Split: In an m-way AND split (Fig.2), after task a, m paths may
proceed in parallel. Each path starts with a task {b1 . . . bm}. If a occurs in a
trace, then the remainder of the trace will contain each bi ∈ {b1 . . . bm} before
the end of the trace, in one of m! permutations. Since PDFA do not explicitly
represent parallelism, the fragment using XOR splits is more complex than the
Petri net equivalent (Fig.2). After the first parallel task there are

(

m
1

)

possible

states,
(

m
2

)

after the second, and so on to
(

m
m−1

)

before the last parallel task.

The equations given for XOR splits can be modified to give the probability of
discovery of XOR joins, and AND splits and joins, with sets Y and N populated
with the required “must see” and “must not see” pairs of tasks.

6 Phil Weber, Behzad Bordbar, and Peter Tiňo

3.2 Simplifying the Formulae

Given knowledge of the ground truth, many terms in these equations may be
zero. Nevertheless, they can become cumbersome to work with, requiring knowl-
edge of many probabilities. Nor do they relate intuitively to the working of the
algorithm. Next we discuss how these formulae can be effectively simplified with-
out loss of accuracy to give formulae which intuitively follow from the working
of the Alpha algorithm, and are simpler to calculate. We denote the probability
of discovery of structure S by Alpha, as Pα(S).

Lemma 1. The probability of discovery of splits and joins may be usefully ap-
proximated by treating the probabilities of discovery of the Alpha relations over n

traces as independent, and multiplying. The probability is over-stated but the er-
ror rate decreases exponentially with increasing n. For a general split/join struc-
ture (B in Fig.3) where m paths of which p are XOR (the remainder parallel)
join and then split to n paths of which q are XOR (the remainder parallel):

Pα(S) ≤

i=m,j=n
∏

i,j=1

Pα(ai →n bj) ×

i,j=p
∏

i,j=1:i<j

Pα(ai #n aj) ×

i,j=q
∏

i,j=1:i<j

Pα(bi #n bj)×

i,j=m
∏

i,j=(m−p):i<j

Pα(ai ‖n aj) ×

i,j=n
∏

i,j=(n−q):i<j

Pα(bi ‖n bj) (6)

Due to space restrictions the proof will be published elsewhere. In summary, the
error in the approximation is the difference between equations 5 and 6. Using
pi ∈ [0, 1] as shorthand for π(abi), etc., this error is bounded by the sum of terms
of the form (1−pi)

n(1−pj)
n−(1−pi−pj)

n = (1−pi−pj +pipj)
n−(1−pi−pj)

n,
which decay exponentially in n, after a maximum at relatively low n.

These probabilities for discovery of structures in a model can be combined
to give the probability of successful mining by Alpha of a whole model.

4 Experiments

We designed a simple artificial process model (Fig.3) as the ground truth, and
used the original (section 3.1) and simplified (3.2) formulae to predict the number
of traces needed to mine a correct model (table 1). There is very little difference
between the predictions, the simplification giving a slight underestimate. Logs in
the MXML format were simulated from the automaton; 100 samples of logs from
10 to 300 traces in increments of 10, with a ground truth log of 10000 traces,
assumed to be complete and distributed approximately according to the ground
truth. Alpha in ProM (www.processmining.org) was used to mine these logs.
Since Alpha produces non-probabilistic Petri nets, to compare the structure of
the mined models with the ground truth structure, the nets were converted to
probabilistic automata using their Reachability Graphs and labelling splits with
maximum likelihood probabilities from the ground truth log.

A Principled Approach to the Analysis of Process Mining Algorithms 7

Table 1. Predicted vs. Actual Number of Traces for Probability of Successful Mining

Probability Exact Prediction Simplified Actual Traces

90% 132 131 90–100
95% 170 170 130–140
99% 263 262 280–290

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

M
e
a
s
u
re

 o
r

D
is

ta
n
c
e

Fitness
Beh. Approp. a’

B

Struct. Approp. a’
S

d
2

d
Bhat

d JSD

Fig. 4. Average Metrics Against Number
of Traces

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

P
ro

b
a
b
ili

ty
 o

f
A

p
p
ro

x
im

a
te

ly
 C

o
rr

e
c
t
M

o
d
e
l

Fitness f ≥ 0.9

Fitness f ≥ 0.95

Fitness f ≥ 0.99

d
Bhat

 ≤ 0.1

d
Bhat

 ≤ 0.05

d
Bhat

 ≤ 0.01

Fig. 5. Probability of 95% Approximately
Correct Model

The d2 and Bhattacharyya [4] distances, and the Jensen-Shannon Divergence
(based on Kullback-Leibler) were used to calculate the average difference between
the ground truth and automata mined from each log size. These and the ‘Fitness’
(recall) and Behavioural Appropriateness (precision) metrics [5] were plotted
against number of traces (Fig.4). The graph shows that approximate correctness
of the mined models converges at approximately the predicted points.

The distance measures seem more discriminating, being distributed over a
clearer scale, compared with ‘Fitness’. This is more apparent in Fig.5, which
shows the probability of mining an approximately correct model, as measured by
‘Fitness’ (f) and the Bhattacharyya distance (DBhat), for various thresholds of
approximate correctness. This is only a rough measure, as a single data point is
calculated for each log file size; a count of the number of experiments from the
100 carried out for each size, for which the distance was below the threshold. The
probability distance measure seems less sensitive to the threshold used, whereas
‘Fitness’ indicates convergence too soon, except for the 99% threshold.

5 Conclusion

Most process mining algorithms attempt to mine structural models of activities
and relations between them, from a log that is assumed to be complete, and do
not model probabilities. This does not provide for a way to know how much data
is needed to be confident in mining results.

8 Phil Weber, Behzad Bordbar, and Peter Tiňo

We suggest a novel probabilistic framework for considering business processes
and process mining algorithms. The underlying business process is a distribu-
tion over strings of activities, and the primary task of mining the control-flow
of the process is to learn this “ground truth” distribution, from a finite random
sample of process traces which are drawn i.i.d. from the ground truth. Pro-
cess mining algorithms then secondarily address additional requirements such
as the representation language to use, or display detail or abstraction. Within
this framework, process models may be compared using distances between the
distributions which they generate, rather than ad-hoc or syntactic methods, and
the behaviour of algorithms in terms of their convergence to the ground truth.

Applying this framework to the Alpha algorithm [8] we showed that using
the structures in a model it is possible to accurately predict how much data will
be needed to, with a given level of confidence, mine a model that is correct to
a specified accuracy. We plan to apply this framework to other process mining
algorithms and develop deeper learning theory relating to process mining.

Acknowledgments P. Weber is supported by a Doctoral Training Grant funded
by EPSRC and the School of Computer Science, University of Birmingham.

References

1. Ferreira, D. R. and Gillblad, D. Discovering Process Models from Unlabelled Event
Logs. In Dayal, U., Eder, J., Koehler, J., and Reijers, H. A. (eds.), BPM 2009.
LNCS, vol. 5701, pp. 143–158. Springer, 2009.

2. Günther, C. W. and van der Aalst, W. M. P. Fuzzy Mining - Adaptive Process
Simplification Based on Multi-Perspective Metrics. In Alonso, G., Dadam, P., and
Rosemann, M. (eds.), BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, 2007.

3. Herbst, J. and Karagiannis, D. Integrating Machine Learning and Workflow Man-
agement to Support Acquisition and Adaption of Workflow Models. Int. J. Intell.

Syst. Account. Financ. Manage., 9(2):67–92. 2000.
4. Kailath, T. Divergence and Bhattacharyya Distance Measures in Signal Selection.

IEEE Trans Communication Technology, CM-15(1):52 – 60, 1967.
5. Rozinat, A. and van der Aalst, W. M. P. Conformance Checking of Processes

Based on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.
6. Song, M., Günther, C. W., and van der Aalst, W. M. P. Trace Clustering in

Process Mining. In Ardagna, D., Mecella, M., and Jian Yang (eds.), Business

Process Management Workshops. LNBIP, vol. 17, pp. 109–120. Springer, 2008.
7. Tiwari, A., Turner, C. J., and Majeed, B. A Review of Business Process Mining:

State-of-the-Art and Future Trends. Bus. Process Manage. J., 14(1):5 – 22, 2008.
8. van der Aalst, W. M. P., Weijters, T., and Maruster, L. Workflow Mining: Discover-

ing Process Models from Event Logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–
42, 2004.

9. Vidal, E., Thollard, F., de la Higuera, F., Casacuberta, F., and Carrasco,
R. C. Probabilistic Finite-State Machines - Part I. IEEE Trans. Pattern Anal.,
27(7):1013 – 25, 2005.

10. Weijters, T., van der Aalst, W. M. P., and Alves de Medeiros, A. K. Process
Mining with the Heuristics Miner Algorithm. BETA Working Paper Series 166,
2006. Eindhoven University of Technology.

