
A FRAMEWORK FOR COMPARING PROCESS MINING ALGORITHMS

Philip Weber, Behzad Bordbar, Peter Tiňo

School of Computer Science

University of Birmingham, B15 2TT, UK

P.Weber,B.Bordbar,P.Tino@cs.bham.ac.uk

Basim Majeed

Etisalat BT Innovation Centre (EBTIC)

Khalifa University, Abu Dhabi UAE

Basim.Majeed@bt.com

ABSTRACT

There are many process mining algorithms with different

theoretical foundations and aims, raising the question of

how to choose the best for a particular situation.

A framework is proposed for objectively comparing

algorithms for process discovery against a known ground

truth, with an implementation using existing tools.

Results from an experimental evaluation of five algo-

rithms against basic process structures confirm the validity

of the approach. In general, numbers of traces for mining

are predictable from the structure and probabilities in the

model, but there are some algorithm-specific differences.

Index Terms— Business data processing, Modeling,

Algorithms

1. INTRODUCTION

Process mining is the extraction of models of business pro-

cesses, from companies’ information systems log files, to

enable businesses to better understand and optimise their

activities. Models can be graphical, for use by analysts and

management, and also formal, for mathematical analysis.

This is an active area of research, with many algorithms

being created [1] raising the question of how to choose an

algorithm for a particular situation. This is a problem both

for businesses using process mining, and for researchers

evaluating new developments. There is a need for meth-

ods for objectively comparing process mining algorithms

against known characteristics of business process models

and logs, in terms of what can be re-discovered and how

much data is required to do so.

In this paper a framework is presented for the evalua-

tion of process mining algorithms against a known ground

truth. This includes a method for systematic comparison,

and a body of experimental data describing the behaviour

of algorithms with typical process structures. An imple-

mentation of the method is tested using existing tools. In

summary, CPN Tools1 is used to create and simulate a

ground truth in the form of artificial process models con-

sisting of known structures, to produce sets of test process

logs. The ProM framework2 is used to mine process mod-

1http://cpntools.org/
2http://processmining.org/

els from these using well-known algorithms, and to check

the resulting models for conformance to the ground truth,

to find the number of traces required to enable high confi-

dence in being able to re-discover the original model.

The results from tests on a set of basic process struc-

tures show that in general the number of traces required

can, for at least these simple structures, be predicted from

the structure of, and probabilities in, the model. For some

structures and algorithms, the results diverge from the ex-

pectations suggested by these characteristics. These dis-

crepancies are in line with expectations from the literature,

confirming the validity of the method.

Process mining is introduced in section 2, and the prob-

lem is described in more detail in section 3. The frame-

work is presented in section 4. Sections 5 and 6 discuss

a sample of the experimental testing and results. Some

related and future work is outlined in sections 7 and 8.

2. PRELIMINARIES

Various perspectives on a business process can be mined

[1]. In this paper the focus is on the control-flow perspec-

tive, understanding what business activities take place and

in what order. This information can inform activities such

as Business Process Management (BPM), troubleshooting,

improving efficiency, and so on.

We consider process discovery, rather than compliance,

performance or other aspects. An underlying business pro-

cess model M is assumed, which is the reality of the way

the business operates, perhaps different from what is

thought. This controls what activities take place. Events

relating to activities’ occurrence are recorded in logs and

can be extracted or reformatted as process traces σ, each

of which is a sequence of activities representing one sin-

gle enactment of the whole process, effectively a sample

from the model M . The process mining problem is to ‘re-

discover’ a process model M ′ from a log L of traces and

to analyse it for its conformance to the original model M :

whether it allows all of, and only, the valid event traces.

3. PROBLEM DESCRIPTION

There are many different approaches to process mining.

We refer to the review in [1], and add recent references.

Local methods look at local relations between activities in



logs (α, α++, Heuristics Miner), while global approaches

build and refine a model based on the whole log (Genetic

Mining, Region Mining [2], Fuzzy Miner [3]).

Different algorithms have their own specialisms, e.g.

α is proven to be able to mine models that adhere to the

restrictions of Structured Workflow Nets (SWF-nets) [4],

but not mine implicit dependencies or handle noisy logs

well; Heuristics Miner uses frequencies and parametrisa-

tion to handle noise; while Genetic Process Mining can

mine complex and noisy logs, but is resource intensive.

More recent approaches focus on managing complex real-

world models or noisy logs using clustering and abstrac-

tion, e.g. at the trace [5] or activity [6] level.

The problem is the need for a method to objectively

compare process mining algorithms, to enable informed

choice of which to use in a situation. Which algorithms

work ‘best’, in what circumstances? Which results are the

‘best’, and can this be quantified in terms of accuracy or

confidence [7]?

4. AN EVALUATION FRAMEWORK

A conceptual framework is proposed within which process

mining algorithms can be compared objectively. Next, we

will describe the outline of the method and a sketch of our

implementation.

4.1. Method

The framework is as follows:

1. design a ground truth process model M containing

known structures;

2. optionally, estimate the expected number of traces

required, to target the experiments;

3. simulate enacting M to produce artificial process

logs {L1, L2, . . .}with increasing numbers of traces,

plus a “very large” log L∗, assumed to be complete

(contain all possible process behaviour, distributed

approximately according to the underlying reality);

4. mine ‘re-discovered’ models {M ′

1,M
′

2, . . .} from

the logs, using selected algorithms;

5. assess the ability of {M ′

1,M
′

2, . . .} to ‘fit’ all the be-

haviour in L∗, to find the minimum number of traces

n for M to be re-discovered with high probability;

6. average over multiple simulations and test data sets.

4.2. Implementation

We implemented and tested the framework using existing

tools (Figure1): 1) CPN Tools is used to design Petri Net

representations of artificial process models, allowing con-

trol over the path probabilities, and 2) with the addition of

the ProM CPN Library [8], is used to simulate the models,

to produce MXML log file fragments. 3) Log fragments

can be merged using the ProMimport CPN Tools plug-in,

control script

CPN Tools

ProM CPN

Library

ProM

Framework

data extraction scripts

TOOLS ACTIVITY RESULT

 design

 simulate

 merge

process mining

and

conformance

log fragments

full MXML logs

results CSV

t:1

or1

complete

or2

complete

seq1

complete

start

or1

or2

seq1

INT INTINT

prob1

p<=50

p>50

p

p

CPN Tools Model

ProM Modelp
ro

c
e

s
s
in

g

1

2

3

5

4

6

Figure 1. Implementation of Evaluation Framework.

or with a simple script. 4) A script is used to guide the

interactive running of stages 1-3 to produce multiple sets

of test logs, independently randomly sampled.

Mining and analysis (5) is a manual process using the

ProM framework. For each test, one small log file is mined

with one algorithm and the resultant process model (con-

verted, and) exported as a Petri Net Kernel file. The ground

truth log file is then loaded into ProM and linked to this

Petri Net. Next, the Conformance Checker plug-in [9] is

run to measure the mined model against the underlying

process described by the large log. 6) The collected re-

sults can then be analysed. Data recorded include each al-

gorithm’s specific reports, such as the characteristics of the

discovered Petri Net, plus the Conformance Checker’s as-

sessment of the model’s fitness, “behavioural appropriate-

ness” (under-fitting) and “structural appropriateness”

(over-fitting and generalisation).

This initial implementation offers much scope for au-

tomation to improve speed and accuracy.

5. EXPERIMENTATION

A set of experiments was carried out using the framework

described in section 4 using artificial process models com-

prised of basic structures and sequences and nesting of

like structures. Mining was carried out using the α, α++,

Heuristics Miner (HM), Genetic Miner (GM) and Region

Miner (RM) algorithms. These were chosen because they

are fundamental algorithms, commonly used, implemented

in the ProM framework, and represent significantly differ-

ing approaches to process mining.

A comprehensive set of basic structures and combina-

tions were tested: 2- and 5-way XOR (choice) and AND

(parallel) splits/joins, singly and nested to depth 3, and two

and three in sequence; single-task loops, executed ≥ 0 and

≥ 1 times; nested single-task loops; and “implicit depen-

dencies” [4, Fig. 7] over 1 or 2 tasks, and nested. While

many other structures can be found in ‘real-world’ busi-

ness process models, such as non-exclusive splits, com-

plex loops and various types of synchronisation, not all can

be straightforwardly represented by Structured Workflow

Nets (a Petri Net subset minimal for representing business

processes, and mineable by the α algorithm [4]).



Structure Predict. Notes

5-way XOR 14 > 20 traces required.

3 two-way

XOR in seq.

23 α++, RM only 7.

2, 3 two-way

AND in seq.

5 HM and GM needed over

15− 20.

Single 5-way

AND

120 only 25 needed, except RM

which was unable to mine.

Nested AND 5 > 50 needed.

Nested loop 71 79 needed except HM failed

even with 200 traces.

Nested

implicit dep.

11 > 100 needed (consistent

mining not achieved).

Table 1. Results differing from prediction (HM = Heuris-

tics Miner, RM = Region Miner, GM = Genetic Miner).

5.1. Estimating Numbers of Traces

A simplistic approach to estimating the number of traces

is to use the probability of the least probable path through

the model, and assert that if that has been seen, probably

all other paths will have been seen also. This is not the

whole truth, but provides a starting point for experimenta-

tion. For example, the number of traces for a 95% proba-

bility of discovering a two-way XOR split with path prob-

abilities 0.1 and 0.9, is the number required for a ≤ 5%

probability of only seeing the 0.9 path: n ≈ ln 0.05

ln 0.9
< 29.

5.2. Test Process

The process described in section 4.2 was followed. In most

cases, the number of traces was predicted for 95% confi-

dence in mining a 100% fit model consistently. Due to

the manual nature of the test process, only 10 tests were

carried out for each model and algorithm, and the confor-

mance results averaged over this set. Rather more samples

are needed for greater statistical validity.

For each test model, a ‘large’ noise-free sample of 5000

random traces was generated by CPN Tools. From these,

traces were randomly selected to build the MXML test log

files. For each model that was mined, the Fitness, Be-

havioural and Structural Appropriateness measures, and

the number of models which reported 100% Fitness were

recorded and compared with predictions.

6. RESULTS

Space does not permit full results to be presented, so only

results showing differences between the algorithms, or be-

tween the predicted and actual number of traces required,

are reported (table 1). Further analysis is needed for some

of these results, but three main issues arise.

Incorrect Estimation: When estimating the number

of traces required for a model, the behaviour of the al-

p1

p2

p3 p5

p6p4

(a) All routes present, mineable by all tested algorithms.

p1

p2

p3 p5

p6p4

(b) Missing path between two pairs, HM and GM not capable of mining.

p1

p2

p3 p5

p6p4

(c) Pair in one order only (AND), also breaks α and α
++.

Figure 2. Traces through AND and XOR sequential con-

structs and their effect on mineabilty.

gorithm and path probabilities in the model need to be

taken into account. The low prediction for the 5-way XOR

split/join was due to estimation as if the only way for it

to fail was for one path of probability 0.2 to be missed,

whereas in fact all 5 paths can cause failure in this way.

Similarly these algorithms only need to see relations be-

tween pairs of tasks in a parallel structure [4], rather than

all possible task sequences, so 120 traces estimated for the

5-way AND split is an over-estimate.

Algorithm-Specific Behaviour: Investigating the log

files suggests that differences between the algorithms for

XOR and AND sequences are explained by how many of

the ‘transitions’ between the paths in one structure to those

in the next, they need to see (Figure2). RM was unable to

complete the mining, or display the model, for the 5-way

AND split. ProM log messages implied that a complex

model had been discovered, suggesting that it was unable

to infer the parallelism.

HM failed to achieve 100% average fitness for the

nested loop model. Further investigation is needed, but

this may be due to setting parameters for finding detail in

small logs, causing explicit paths to be detected instead of

loops, or it may be related to the conversion to Petri Net.

The nesting of AND split/join structures is possibly an

overly artificial model design. However, it increases the

amount of parallelism considerably and only the Region

Miner was able to re-discover the model consistently.

Other Issues: The low estimate for the nested loop

is probably due to the way in which the simulated model

was designed, which prevented the loops from executing

truly independently. HM and α are known not to be able

to mine implicit dependencies. The models returned by

these algorithms were assessed as 100% fit, but penalised

by the behavioural measures for allowing too much extra

behaviour. This suggests that improved metrics would still

be useful. The nesting of implicit dependencies caused

problems for all algorithms, because all tasks in the nested

structure are in parallel with tasks in the outer structure,

suggesting that many more traces would be needed.



7. RELATED WORK

There is a large body of literature since the mid-1990s for

process mining, recently reviewed in [1].

In [7] the need for a comprehensive process mining

framework, to include process test data, tools and compar-

ison methods, is discussed. Different evaluation methods

are described and tested, and the need highlighted to be

able to mine with confidence in the accuracy of the results.

The work described in this paper fits with this framework,

providing a new evaluation method and proposing a body

of empirical results based on process structures.

Conformance analysis and metrics for evaluating pro-

cess models are further discussed in [9], introducing the

Conformance Checker plug-in to ProM. Testing with re-

gard to process structures is described in [10], in the con-

text of testing the Genetic Mining algorithm against cer-

tain structures. Some comparison of the behaviour of vari-

ous algorithms on different models is reported in [11], us-

ing the Minimum Description Length principle to encode

a log and Petri net, comparing the compression of the log

by the model, with the simplicity of the model.

In [12] CPN Tools and the ProM plug-in is used to cre-

ate and simulate Petri Nets, controlling probabilities, using

ProMimport to load the resultant logs to ProM. The inverse

process is discussed in [13], along with problems with de-

termining probabilities of paths through the process.

8. CONCLUSIONS

We discussed an outstanding problem in Process Mining,

how to choose a mining algorithm, and proposed a frame-

work for objective evaluation; designing, simulating and

comparing artificial process models of known structure,

against a ground truth. An implementation using existing

tools was tested on a set of basic process structures.

Experimentation compared the behaviour of some al-

gorithms with basic process structures, and suggested that

the number of traces required for confidence in mining the

correct model can in general be predicted from the struc-

ture of, and probabilities in, the model. This confirms the

validity of the method, with differences being in line with

expectations from the literature. Particular results show

some algorithms performing differently from predicted,

for some structures, suggesting that prior knowledge of the

business process should influence the choice of algorithm.

The results indicate that testing based on process struc-

tures is worthwhile, as there are differences between the

algorithms to be discovered and explained. Many more

results need to be collected to build up a comprehensive

body of reference data, to enable the comparison of algo-

rithms to inform choice. The framework also needs to be

automated and placed on a firm theoretical foundation.

9. REFERENCES

[1] A. Tiwari, C.J. Turner, and B. Majeed, “A review of

business process mining: state-of-the-art and future

trends,” Bus. Process Manage. J. (UK), vol. 14, no.

1, pp. 5 – 22, 2008.

[2] W.M.P. van der Aalst, V. Rubin, B.F. van Dongen,

E. Kindler, and C.W. Günther, “Process mining: A

two-step approach using transition systems and re-

gions,” Inf. Syst., vol. 34, no. 3, pp. 305–327, 2009.

[3] Christian W. Günther and Wil M. R. van der Aalst,

“Fuzzy mining – adaptive process simplification

based on multi-perspective metrics,” Business Pro-

cess Management, Proceedings, vol. LNCS 4714,

pp. 328–343, 2007.

[4] W. van der Aalst, T. Weijters, and L. Maruster,

“Workflow mining: discovering process models from

event logs,” IEEE Transactions on Knowledge and

Data Engineering, vol. 16, no. 9, pp. 1128–42, 2004.

[5] Minseok Song, Christian W. Gunther, and Wil M. P.

Van Der Aalst, “Trace clustering in process mining,”

in Lecture Notes in Business Information Processing,

Milano, Italy, 2009, vol. 17 LNBIP, pp. 109 – 120.

[6] Christian W. Gunther, Anne Rozinat, and Wil M. P.

Van Der Aalst, “Activity mining by global trace seg-

mentation,” in Lecture Notes in Business Information

Processing, Ulm, Germany, 2010, vol. 43 LNBIP, pp.

128 – 139.

[7] A. Rozinat, A.K. Alves de Medeiros, C.W. Günther,

A.J.M.M. Weijters, and W.M.P. van der Aalst, “To-

wards an evaluation framework for process mining

algorithms,” 2007.

[8] A. K. Alves De Medeiros and C. W. Günther, “Pro-

cess Mining: Using CPN Tools to Create Test Logs

for Mining Algorithms,” in Proceedings of the Sixth

Workshop and Tutorial on Practical Use of Coloured

Petri Nets and the CPN Tools, 2005, pp. 177–190.

[9] A. Rozinat and W.M.P. van der Aalst, “Conformance

checking of processes based on monitoring real be-

havior,” Inf. Syst., vol. 33, no. 1, pp. 64–95, 2008.

[10] A.K.A. De Medeiros, A.J.M.M. Weijters, and

W.M.P. Van Der Aalst, “Genetic process mining: An

experimental evaluation,” Data Mining and Knowl-

edge Discovery, vol. 14, no. 2, pp. 245–304, 2007.

[11] T. Calders, C. W. Günther, M. Pechenizkiy, and

A. Rozinat, “Using minimum description length for

process mining,” in SAC ’09: Proceedings of the

2009 ACM symposium on Applied Computing, New

York, NY, USA, 2009, pp. 1451–1455, ACM.

[12] A. Rozinat, R. S. Mans, M. Song, and W. M. P.

van der Aalst, “Discovering colored Petri nets from

event logs,” Int. J. Softw. Tools Technol. Transf., vol.

10, no. 1, pp. 57–74, 2008.

[13] A. Rozinat, R. S. Mans, M. Song, and W. M. P.

van der Aalst, “Discovering simulation models,” Inf.

Syst., vol. 34, no. 3, pp. 305–327, 2009.


