
Real-Time Detection of Process Change using

Process Mining

Phil Weber, Behzad Bordbar, and Peter Tiňo

School of Computer Science, University of Birmingham, B15 2TT, UK.
{p.weber,b.bordbar,p.tino}@cs.bham.ac.uk

Abstract. Process Mining is the discovery of business processes from
log files. One application is ensuring conformance to prescribed processes
or business rules. Businesses operate in real time, needing to quickly react
to change. We consider requirements for process mining to support this:
a notion of real time, and methods to compare processes and detect
significant change. We present initial results confirming the validity of
the approach.

Keywords: Process mining, machine learning, real time, distributions.

1 Introduction

Business processes describe related activities which are carried out to fulfil a
business function. Fig.1 shows an example process, depicted as a probabilistic
automaton. Each directed arc is labelled with a symbol representing an activity,
and the conditional probability of that activity taking place next.

As the process is executed, the systems involved will record information in
log files. Abstracting from detail, the ‘trace’ of a single enactment of this process
might be recorded as a string of symbols iabdefgo. Process mining [6] algorithms
use logs of such traces to discover and analyse process models.

Business processes are used to manage business operations, which today take
place in real time, under pressures of time, cost and competition. Processes may
also ensure adherence to business rules or regulatory requirements. Divergence
from these processes may therefore indicate a business problem, or have legal
ramifications, and so such changes need to be detected in a timely manner.

To enable detection of process change in real-time, several requirements need
to be addressed. Firstly, a definition of real time and its application to process
mining; secondly, a method to measure accurately the difference between two
processes; thirdly, a method to detect change in a process; and finally a notion
of statistical significance of the change. We briefly address these points in the fol-
lowing sections, after first introducing a probabilistic view of business processes
and process mining, which underpins the subsequent ideas.

2 A Probabilistic View of Business Processes

We model activities as symbols from a finite alphabet Σ, traces as strings x ∈

Σ+, and a process as a probability distribution PM over traces. Probability of

2 Phil Weber, Behzad Bordbar, and Peter Tiňo

Fig. 1. PDFA showing a simplified business process for fulfilling an order.

trace x is PM(x) :
∑

x∈Σ+ PM(x) = 1. The task of a process mining algorithm
is to learn a distribution PM′ , to approximate PM, from the finite log W drawn
i.i.d. from PM. This differs from existing views of process mining, which focus
on discovery of a model structure in a specific representation such as Petri nets.

We use probabilistic deterministic finite automata (PDFA) [8] (Fig.1) to rep-
resent the probability distributions generated by process models, as a common
denominator to which processes in other representations can be converted. A
PDFA is a five-tuple A = (QA, Σ, δA, q0, qF), where QA is a finite set of states;
Σ an alphabet of symbols; q0, qF ∈ QA the single start and end states; and
δA : QA×Σ×QA → [0, 1] is a mapping defining the conditional transition prob-
ability function between states. δ(q1, a, q2) is the probability that given we are
in state q1, we parse a and arrive in state q2. Given a current state and symbol,
the next state is certain. The probabilities on arcs from a state sum to 1.

PDFA A generates a probability distribution PA on Σ+. The probability of
string x, PA(x), is found by multiplying the probabilities of the arcs followed to
parse x on its unique path from the single start state q0 to unique end state qF .

3 Overview of Approach

3.1 Real-time Process Mining

The term ‘real time’ is used subjectively of systems which appear to process
information ‘fast’. Formally, real-time systems ‘must react within precise time
constraints to events in the environment’ [2]. The key is predictability and results
guaranteed in a specified time, rather than speed. For us this means identifying
process change as soon as possible, but with confidence that change is significant.

We consider two main constraints: accuracy and time. The mining algorithm
must produce a model ‘close’ to the ‘true’ model using some notion of distance
between distributions. We expect accuracy to increase with the amount of data,
but for this to increase mining time. So these two constraints act in tension. We
desire to minimise mining time, but characteristics of the ground truth distribu-
tion will determine the minimum data needed for confidence in mining accuracy.

This lower bound ensures we use the correct baseline, against which to mea-
sure change. We do not consider issues such as predicting time to detect change,
from the type or magnitude of change. Other environmental issues may also af-
fect the real time behaviour of the system [2] and need to be taken into account.

Real-Time Detection of Process Change using Process Mining 3

3.2 Determining the Amount of Data Needed for Mining

One way to determine the amount of data needed is to consider the structures in
a process (highlighted in Fig.1), and the probability of an algorithm discovering
these structures. In [9] we discuss this approach and apply it to the Alpha algo-
rithm [7], which uses heuristics about the relations seen between pairs of tasks
in the log, to construct a Petri net. To compare this non-probabilistic model
against the ground truth distribution, we convert the Petri net to a PDFA by
labelling its reachability graph (state model) with maximum likelihood prob-
abilities obtained from the mining log. This allows us to satisfy the accuracy
constraint. We do not address the time constraint as Alpha is relatively simple.

3.3 Methods to Detect Process Change

We mine repeatedly from sublogs, using a ‘sliding window’, and compare the
distribution generated by the mined model with the ground truth distribution.
There are many measures of difference between probability distributions, such
as Euclidean distance, Kullback-Leibler Divergence. Some can be efficiently cal-
culated from PDFA, but it is not clear what distance is statistically significant.
Instead, we use statistical tests for detecting that the mined distribution, or its
PDFA representation, has changed significantly from the ground truth.

The count of each unique trace x in the log can be modelled as a Binomially-
distributed random variable, since any trace in the log will either be x, or not.
The same is true of the number of times each arc in the PDFA is used in gener-
ating the log: each trace will either use that arc, or not (at present we assume
acyclic models). If the number of traces is large enough relative to the trace/arc
probabilities, the Binomial can be approximated by the Normal distribution.

Goodness of Fit Test on the Distribution: The sum of k Normally
distributed random variables follows a Chi2 distribution with k − 1 degrees of
freedom. Thus we can use the Chi2 test to determine whether the difference
between the count of each unique trace found in the sample, and the expected
count, is likely under the assumption that the log was drawn from the ground
truth distribution. The so-called p-value gives the probability that the Chi2

distribution would exceed the measured value, indicating that with probability
1− p, the process has changed.

Bounds and Hypothesis Tests on the PDFA:We expect the PDFA from
the mining result to have the same state structure as the ground truth PDFA
(making assumptions about the ground truth PDFA and the mining algorithm).
The Hoeffding inequality upper bounds the probability of a sum of random
variables deviating from its expected value. As [3], we use this to compare the
probability of each arc from equivalent states in the models, by comparing the
sum of the Bernouilli variables that each trace involves use of that arc.

Secondly, as [4] we use a hypothesis test to test how likely it is that an arc
would be used the number of times indicated by its probability in the mined
model, to generate the log, assuming the ground truth probability. Here the
count is modelled as Binomial or Normal variable.

4 Phil Weber, Behzad Bordbar, and Peter Tiňo

Bounds and Hypothesis Tests on Traces: The methods described for
testing PDFA arcs can similarly be applied to process traces, so that we can use
Hoeffding bounds or hypothesis tests to determine whether a process trace is
likely to occur with the observed frequency, under the ground truth distribution.

4 Experimentation and Analysis

We used the example process of Fig.1. Using our method [9] the Alpha algorithm
needs 44 traces to, with 99% probability, correctly mine a (non-probabilistic)
Petri net with the correct structure. We randomly simulated the PDFA to pro-
duce an MXML1 format log file of this size, and regularly updated it by simu-
lating one new trace and removing the oldest. This simulates a ‘sliding window’
onto a log file being updated in real time by a live process. Changes were intro-
duced to the probabilities or structures in this PDFA. At each iteration, we used
the Alpha algorithm2 to mine a Petri Net from the current log and converted to
a PDFA (section 3.2). We recorded distances between the distribution generated
by this PDFA and the ground truth, and results of the tests in section 3.3.

We ran three experiments to test the hypotheses that (i) change is detectable
using a variety of methods, (ii) more significant change is detected in fewer traces,
and (iii) the predicted number of traces for mining the model is the optimum to
use for detecting change, thus allowing detection in real time.

Since the Alpha algorithm mines only a Petri net structure (no probabilities),
it needs a relatively small sample of traces, which exhibits high variance from
the ground truth (Fig.2), resulting in high risk of false positives (incorrectly
detecting change) or false negatives (not detecting true change). We did not
take this into account beyond ensuring no false positives occurred before change
was introduced, but it would affect the detection point. These initial results were
also based on one test only of each sample. The main results seem clear, but are
not statistically valid without averaging over multiple tests.

Varying Probabilities We varied probabilities in the XOR splitB, and parallel
split C. Small variations (< 0.1) were not detectable, although the distance
measures increased. For the XOR split, change to p(ab) = 0.7 was discovered in
28 iterations, reducing to 9 for p(ab) = 0.1. Detection was first by the hypothesis
test on strings (Fig.4) or arcs, then by X2 (Fig.3), and last by the Hoeffding
tests. The looseness of the Hoeffding bound allows the string/arc frequencies to
be more readily accepted as within confidence bounds given the ground truth.

The variation of AND probabilities was tested with probability of the struc-
ture in the model being 0.9 and then 0.1. The latter change was detected first
by arc differences (Fig.5), the string difference methods not detecting it at all.
This is explained by the probability of traces passing through the AND structure
being too low to detect significant changes, but for those that do, changes to arc
usage are local and not affected by the global probability of the structure.

1 Mining eXtensible Markup Language, see www.processmining.org.
2 implemented in the process mining tool ProM (www.processmining.org).

Real-Time Detection of Process Change using Process Mining 5

0 100 200 300 400
0

0.5

0

0.5

0

0.5

1

Iterations

X
2
 p

−
v
a

lu
e

17 Trace

44 Trace

100 Trace

Fig. 2. Fluctuations in X
2 p-value over

time, from unchanged source process.

10 20 30 40 50 60
0

0.5

0

0.5

0

0.5

1

Iterations

X
2
 p

−
v
a
lu

e

17 Trace

44 Trace

100 Trace

Fig. 3. Detection of XOR probability
change using X

2 p-value.

Varying amount of data We varied the amount of data in the ‘sliding window’.
With 44 traces we see high variance in the probability distribution, seen in the
large fluctuations in X2 p-value in the centre graph of Fig.2. The lower graph
shows that the frequency and amplitude of these changes is reduced with 100
traces, with no significant (0.05) p-values. The cost is slower detection of change
(Fig.3 and 4). Conversely, reducing the number of traces to 17, change can be
detected sooner, but with higher risk of false positive or false negative.

5 Related Work

Process Mining has been an active area of research since the early 1990s, re-
cently reviewed in [6]. Non-probabilistic representations such as Workflow nets
are commonly used [7]. Probabilistic approaches are the exception. ‘Real-time’ is
used informally in Business Process research in regard to the need for flexibility
and process change to respond to a changing environment [5].

An examination of the literature pertaining to real-time data mining, and
stream mining, may inform improvements to our method. Concept drift is the
detecting change of change in machine learning. In [1] this is discussed in a
process mining context, focussing on model structure rather than probability.

6 Conclusion and Future Work

We examined various methods for detecting change in a running process, with
initial results showing that using the optimal amount of data to be confident
that the mined process is correct, various statistical methods can be used to
efficiently detect change in real time.

More work is needed to address the effect of variation in the underlying
distribution and the risk of falsely identifying or missing change, and to predict

6 Phil Weber, Behzad Bordbar, and Peter Tiňo

10 20 30 40 50 60
0

0.5

0

0.5

0

0.5

1

Iterations

D
e
te

c
ti
o
n
 b

y
 H

y
p
o
th

e
s
is

 T
e
s
t
o
n
 S

tr
in

g
s

17 Trace

44 Trace

100 Trace

Fig. 4. Detection of XOR probability
change using hypothesis test on strings.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

180

200

XOR Split Probability Difference from GT

#
 T

ra
c
e
s
 t
o
 D

e
te

c
t
w

it
h
 H

y
p
o
th

e
s
is

 T
e
s
t
o
n
 A

rc
s

AND in 01 XOR

AND in 09 XOR

Fig. 5. AND change detection using hy-
pothesis test on arcs, varying probabilities.

the time to detect change. Some distances between distributions can be efficiently
calculated from PDFA, so understanding of the significance of distance measures,
would lead to more efficient methods for detecting change.

References

1. Jagadeesh Chandra Bose, R. P., van der Aalst, W. M. P., Zliobaite, I., and Pech-
enizkiy, M.. Handling concept drift in process mining. In Mouratidis, H. and
Rolland, C. (eds.), CAiSE, LNCS, vol. 6741, pp. 391–405. Springer, 2011.

2. Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Kluwer Academic Publishers, Norwell, USA, 1997.

3. Carrasco, R. C. and Oncina, J. Learning stochastic regular grammars by means
of a state merging method. In Rafael C. Carrasco and José Oncina (eds.), ICGI,
LNCS, vol. 862, pp. 139–152. Springer, 1994.

4. Jacquemont, J., Jacquenet, J., and Sebban, M.. Mining probabilistic automata:
A statistical view of sequential pattern mining. Machine Learning, 75(1):91–127,
2009.

5. Rinderle, S., Reichert, R., and Dadam, P.. Correctness criteria for dynamic changes
in workflow systems - a survey. Data Knowl. Eng., 50(1):9–34, 2004.

6. Tiwari, A., Turner, C. J., and Majeed, B. A Review of Business Process Mining:
State-of-the-Art and Future Trends. Bus. Process Manage. J., 14(1):5 – 22, 2008.

7. van der Aalst, W. M. P., Weijters, T., and Maruster, L. WorkflowMining: Discover-
ing Process Models from Event Logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–
42, 2004.

8. Vidal, E., Thollard, F., de la Higuera, F., Casacuberta, F., and Carrasco,
R. C. Probabilistic Finite-State Machines - Part I. IEEE Trans. Pattern Anal.,
27(7):1013 – 25, 2005.

9. P. Weber, B. Bordbar, and P. Tiňo. A principled approach to the analysis of
process mining algorithms. In Proceedings of the 12th International Conference on
Intelligent Data Engineering and Automated Learning (to appear), 2011.

