
SoSyM manuscript No.
(will be inserted by the editor)

On challenges of Model Transformation from

UML to Alloy

Kyriakos Anastasakis1, Behzad Bordbar1, Geri Georg2, Indrakshi

Ray2

1 School of Computer Science, University of Birmingham, Edgbaston, Birming-
ham, UK
e-mail: K.Anastasakis@cs.bham.ac.uk, B.Bordbar@cs.bham.ac.uk

2 Computer Science Department, Colorado State University, Fort Collins, Col-
orado, USA
e-mail: georg@cs.colostate.edu, iray@cs.colostate.edu

Received: date / Revised version: date

Abstract The Unified Modeling Language (UML) is the de facto language
used in the industry for software specifications. Once an application has
been formally specified, Model Driven Architecture (MDA) techniques can
be applied to generate code from such specifications. Since implementing
a system based on a faulty design requires additional cost and effort, it
is important to analyse the UML models at earlier stages of the software
development lifecycle. This paper focuses on utilizing MDA techniques to
deal with the analysis of UML models and identify design faults within a
specification. Specifically, we show how UML models can be automatically
transformed into Alloy which, in turn, can be automatically analysed by
the Alloy Analyzer. The proposed approach relies on MDA techniques to
transform UML models to Alloy. This paper reports on the challenges of the
model transformation from UML class diagrams and OCL to Alloy. Those
issues are caused by fundamental differences in design philosophy of UML
and Alloy. To facilitate better representation of Alloy concepts in the UML,
the paper draws on the lessons learnt and presents a UML profile for Alloy.

Key words Alloy, Class Diagrams, MDA, OCL, UML2Alloy

1 Introduction

The Unified Modelling Language (UML) [39] is the de-facto modelling lan-
guage used in the software industry for capturing requirements, design and
specification of software systems. Using automated Model Driven Architec-

2 Kyriakos Anastasakis et al.

ture (MDA) techniques, UML models are now widely used for the imple-
mentation of software systems by using a chain of model transformations
from high-level platform independent models to lower level platform spe-
cific model and subsequently to code [30]. UML models should be analysed
to ensure that faults are detected during the early stages of software de-
velopment lifecycle. This, in turn, will provide significant savings in cost
compared with rectifying errors after the system has been implemented.
Since manual analysis is tedious and error-prone, the analysis should be
automated to the extent possible [33, 29, 15, 7].

Our research utilises Alloy for the analysis of UML models consisting
of class diagram and OCL. Alloy [27] is a high level modelling language
for specifying Object Oriented systems. It also allows expressing first-order
logic structural constrains on the model. Moreover, Alloy is supported by
a software infrastructure [25], which provides fully automatic analysis of
models in the form of simulation and checking the consistency of speci-
fications. Alloy is widely used in the analysis of Object Oriented systems,
among others, it has been successfully applied to the modelling and analysis
of protocols in distributed systems [45], networks [18] and mission critical
systems [14].

There are clear similarities between Alloy and UML languages such as
class diagrams and OCL. From a semantic point of view both Alloy and
UML can be interpreted by sets of tuples [27, 42]. Alloy is based on first-
order logic and is well suited for expressing constraints on Object Oriented
models. Similarly, OCL has extensive constructs for expressing constraints
as first-order logic formulas. Considering such similarities, model transfor-
mation from UML class diagrams and OCL to Alloy seems straightforward.
However, UML and Alloy have fundamental differences, which are deeply
rooted in their underlying design decisions. For example, Alloy makes no
distinction between sets, scalars and relations, while the UML makes a clear
distinction between the three. Because of these differences, model transfor-
mation from UML to Alloy has proved to be very challenging.

Our earlier paper [7] has outlined some of the challenges of the model
transformation from UML class diagram and OCL to Alloy. This paper ex-
tends our previous work, by discussing further challenges related to object
identifiers, multiple inheritance and supported collection constructs. The
transformation rules from UML and OCL to Alloy are presented in more de-
tail and the case study presented here is explained in more depth. Moreover
this paper presents a UML profile for Alloy to allow better representation
of Alloy concepts in the UML.

The paper is organised as follows. Section 2 presents on overview of basic
concepts in this paper, such as the MDA and Alloy. Section 3 demonstrates
our work on the definition of the transformation rules from UML to Alloy.
An example of a secure e-business system, on which we have applied our
approach is presented in Section 4 and Section 5 presents the transformation
rules from UML and OCL to Alloy. Section 6 illustrates some of the most
important issues involved in the transformation. Section 7 describes a UML

On challenges of Model Transformation from UML to Alloy 3

profile for Alloy, developed to allow the representation of Alloy concepts
in UML. An outline of our implementation and a presentation of how our
method can be used to analyse the secure e-business system, can be found in
Section 8. Section 9 elaborates further on some issues of the transformation
and provides pointers to future work. Finally Section 10 presents approaches
related to ours and Section 11 concludes the paper.

2 Preliminaries

This section provides a brief introduction to the basic concepts of the MDA
and Alloy, which will be used in the rest of the paper.

Model Driven Architecture: The method adopted in this paper makes
use of Model Driven Architecture (MDA) [30] techniques for defining and
implementing the transformations from models captured in the UML class
diagram and OCL into Alloy. Central to the MDA is the notion of meta-
models [36]. A metamodel defines the elements of a language, which can be
used to represent a model of the language. In the MDA a model transfor-
mation is defined by mapping the constructs of the metamodel of a source
language into constructs of the metamodel of a destination language. Then
every model, which is an instance of the source metamodel, can be auto-
matically transformed to an instance of the destination metamodel with the
help of a model transformation framework [6, 28].

Alloy: Alloy [27] is a textual modelling language based on first-order rela-
tional logic. An Alloy model consists of a number of signature declarations,
fields, facts and predicates. Each signature denotes to a set of atoms, which
are the basic entities in Alloy. Atoms are indivisible (they cannot be di-
vided into smaller parts), immutable (their properties remain the same over
time) and uninterpreted (they do not have any inherent properties) [27].
Each field belongs to a signature and represents a relation between two or
more signatures. Such relations are interpreted as sets of tuples of atoms.
Alloy introduces facts which are statements that define constraints on the
elements of the model. Parameterised constraints, which are referred to as
predicates, can be included in other predicates or facts. Alloy is supported
by a fully automated constraint solver, called Alloy Analyzer [25], which
allows analysis of system properties by searching for instances of the model.
It is possible to check that certain properties of the system (assertions)
are satisfied. This is achieved by automated translation of the model into
a Boolean expression, which is analysed by SAT solvers embedded within
the Alloy Analyzer. A user-specified scope on the model elements bounds
the domain. A scope is a positive integer number, which limits the number
of each model element in an instance of the system that is being analysed
by the solver. If an instance that violates the assertion is found within the
scope, the assertion is not valid. However, if no instance is found, the as-

4 Kyriakos Anastasakis et al.

sertion might be invalid in a larger scope. For more details on the notion of
scope, we refer the reader to [27, Sect. 5].

One important characteristic of Alloy is that it treats scalars and sets
as relations. For example, a relation between two atoms A1 and A2 is rep-
resented by the pair: {(A1, A2)}. A set like: {A1, A2} is represented by a
set of unary relations: {(A1), (A2)}. Finally a scalar, is represented as a
singleton unary relation. For example, the scalar A1, will be represented in
Alloy as: {(A1)}. Treating both scalars and sets as relations, is an inter-
esting property of Alloy, which makes it distinguishable from other popular
modelling notations and particularly UML. Hence it introduces additional
complexity into the definition of the transformation rules. The following sec-
tion discusses our MDA based approach to transform UML class diagrams
annotated with OCL constraints to Alloy.

3 Description of our Approach

This section presents a brief description of our work. An outline of our ap-
proach is depicted in Figure 1. Using the EBNF representation of the Alloy
grammar [27], a MOF compliant [36] metamodel for Alloy was developed.
To conduct the model transformation from UML to Alloy, a set of trans-
formation rules has been defined, which map elements of a subset of the
metamodels of class diagrams and OCL into the elements of the metamodel
of Alloy. The next section presents the subset of UML that is used by our
approach.

3.1 UML Class Diagrams Subset

The subset is expressive enough to represent basic class diagram concepts,
such as classes, attributes, associations and OCL constraints. Our subset
excludes less popular UML features, whose semantics can be expressed using
classes, associations and OCL. Features not included in our UML metamodel
subset, are interfaces, dependencies and signals.

The subset of UML used in this paper consists of the Kernel package
of the UML metamodel [40, p. 22], as depicted in Figure 2. For reasons of
brevity and so as not to replicate the UML specification, here we present a
simplified version of the metamodel, with only the concrete metaclasses (for
example we do not show the common metaclass Element). This metamodel
will be used in Section 5, to describe the transformation rules from UML
to Alloy.

3.2 Alloy Metamodel

Alloy is a textual language and its syntax is defined in terms of its EBNF [4]
grammar [27, Ap. B]. The grammar represents the concrete syntax of the

On challenges of Model Transformation from UML to Alloy 5

Alloy language. In order to use the MDA, we need to convert the con-
crete syntax of the Alloy language to a MOF compliant abstract syntax
representation. Wimmer and Kramler [50] present a method for generat-
ing metamodels from EBNF representations. We utilised their approach to
generate a MOF compliant Alloy metamodel.

Figure 3 depicts a portion of the Alloy metamodel we constructed for sig-
nature declarations. A signature declaration (SigDecl) is an abstract meta-
class. It can either be an ExtendSigDecl or an InSigDecl, used for subtyping
and subseting signatures respectively. A SigDecl has a signature body (Sig-
Body), which can contain a sequence of constraints (ConstraintSequence).
A signature declaration specifies zero or more declarations (Decl). Declara-
tions are used to define signature fields. They declare one or more variables
(VarId) and are related to a declaration expression (DeclExp). A declaration
expression can either declare a binary relation between signatures (DeclSe-

Fig. 1 Outline of our transformation method.

Fig. 2 A Simplified UML Metamodel

6 Kyriakos Anastasakis et al.

tExp) or a relation that associates more than two signatures (DeclRelExp).
Similarly, we have defined the parts of the Alloy metamodel which represent
expressions, constraints and operations.

Consulting the Alloy reference manual, we were able to devise some well-
formedness rules. For example a Signature may not extend itself. This can
be formally specified in OCL:

context ExtendsSigDecl

inv: ExtendsSigDecl.allInstances() -> forAll(

s:ExtendsSigDecl | (s <> self) implies

(s.declares.name <> self.declares.name))

Other essential well-formedness rules for the Alloy metamodel are in-
cluded in Appendix A.

Fig. 3 A subset of the Alloy metamodel corresponding to signature declarations.

4 Example UML Class Diagram

Figure 4 depicts a UML class diagram that represents the login service
of an e-commerce application. The e-commerce system allows clients (i.e.
Client) to purchase goods over the internet. It is therefore susceptible to var-
ious attacks, including a man-in-the-middle attack that allows an attacker
to intercept information that may be confidential. The login service has
therefore been augmented with the SSL (Secure Sockets Layer [46]) authen-
tication and confidentiality protocol. The man-in-the-middle is modelled in
our example by adding an Attacker class that intercepts all communications
between the Client and the e-commerce server. The Attacker may change
the content of messages, exchanged between the Client and the Server. If
the SSL handshake completes successfully, a secret session key that can be
used for message encryption and decryption will have been exchanged be-
tween Client and Server. All further communication between them will be

On challenges of Model Transformation from UML to Alloy 7

Fig. 4 A model of the SSL protocol used in login service.

encrypted, and thus confidential. If the handshake fails, all communication
is aborted between Client and Server.

Figure 4 depicts a high level representation of the system, where at-
tributes of the classes hold the values of the messages exchanged between
the entities that participate in the interactions. We have modified the orig-
inal e-commerce system model to illustrate some key points in the trans-
formation from UML to Alloy. The modifications are the addition of two
specialization to the original Client class, SoftwareClient and WebClient.
These specializations have different attributes, and also demonstrate differ-
ent inheritance properties that become important in transforming the model
to Alloy.

5 Mapping Class Diagram and OCL to Alloy

This section presents a brief introduction on the transformation rules from
UML to Alloy. It provides an informal correspondence between elements
of the UML and Alloy metamodels, as a basis on which to present the
challenges of the transformation.

5.1 Mapping Class Diagrams to Alloy

Table 1 provides the correspondence between the main elements of the UML
and OCL metamodels and Alloy. In this section we present in more detail
the transformation rules for the most important elements of the UML meta-
model for Class diagrams, i.e. Classes and Properties. Remaining transfor-
mation rules specified in Table 1 can be explained similarly.

8 Kyriakos Anastasakis et al.

Table 1 Correspondence between UML and Alloy metamodel elements

UML metamodel elements Alloy metamodel element

Package ModuleHeader

Class ExtendsSigDecl

Property Decl

Multiplicity Expr

Operation Predicate

Parameter Decl

Enumeration ExntedsSigDecl

EnumerationLiteral ExtendsSigDecl

Constraint Expression

DataType ExtendsSigDecl

Top level UML Classes (i.e. Classes, which are not subclasses of any other
Class) are mapped to Alloy top level Signatures. The UML metaelement
Class is mapped to the Alloy metaelement ExtendsSigDecl. The name of
the Class is mapped to the name attribute of the SigId related to the
ExtendsSigDecl. The isAbstract metaattribute of the Class is mapped to
the isAbstract metaattribute of the ExtendsSigDecl. Top level Signatures
are not related to any SigRef.

Subclasses (i.e. classes that extend other classes) are transformed to
Alloy SubSignatures. The SubSignature is an instance of an ExtendsSigDecl,
like top level signatures, but in this case the SubSignature is related to a
SigRef, which references the signature it is extending.

For example, the Client class in the UML model of Fig. 4 is transformed
to an ExtendsSigDecl, which declares a SigId, whose name is Client. Be-
cause Client is not a subclass, it is not related to any SigRef. Similarly the
SoftwareClient and WebClient are transformed to an ExtendsSigDecl. Un-
like the Client class though, they are related to a SigRef, which refers to
the SigId generated to represent the Client class.

A Property in UML is used to denote to either an attribute or an asso-
ciation end of a Class and is translated to an Alloy field of a signature [27,
Sec. 4.2]. A UML Property is translated to an Alloy declaration of a sig-
nature (Decl). The name metaattribute of the Property is mapped to the
name metaattribute of the VarId related to the Decl. The multiplicity of
the Property is mapped to the Multiplicity of the DeclSetExpr related to
the declaration (Decl). The type of the Property is translated to a signature
reference (SigRef) referencing the signature, to which the class of the type
of the Property, was translated.

For example, Figure 5 depicts a partial object diagram of the abstract
syntax of the generated Alloy model of the WebClient class of Figure 4. The
WebClient was translated to an ExtendsSigDecl, which extends the Client
signature id. The browser attribute was transformed to a VarId and the
type of the attribute to a SigRef. Using a simple MOF2Text [37] mapping we

On challenges of Model Transformation from UML to Alloy 9

automatically translate the Alloy model abstract syntax instance of Figure 5
to the following Alloy textual notation:

sig WebClient extends Client{

browser: one String}

sig String{}

Fig. 5 A Partial Alloy Metamodel Instance of the WebClient Class of Figure 4

5.2 Mapping OCL

Most of the OCL operations on collections have a corresponding Alloy ex-
pression. The forAll() and exists() operations can be mapped to the all
and some Alloy expressions respectively. Similarly the size() operation can
be represented by the Alloy set cardinality operator (#). The isEmpty()
and notEmpty() operations can be equivalently expressed using the size()
OCL operation as suggested by Cabot and Teniente [13]. Therefore using
the transformation rule for size(), we can express those operations in Alloy.
The includes() and excludes() operations can be expressed using the Alloy
set inclusion operator (in). Likewise OCL set operations, such as union(),
intersection() and product() can be expressed using the equivalent Alloy set
operators, +, &, and →, respectively.

Table 2 depicts the mapping between a subset of OCL and Alloy. This
subset consists of the OCL statements that can be directly mapped to Al-
loy. For instance, the syntax of the OCL forAll() operation is shown in the
first cell of the table. The forAll() operation is applied on a collection (col),
defines a variable (v) of type Type and a boolean expression (be). This is
transformed to an all Alloy expression. The variable v is mapped to the
equivalent Alloy variable expression (TR(v)), the collection is transformed
to the equivalent Alloy expression (TR(col)) and finally the boolean expres-
sion is translated to the equivalent Alloy boolean expression (TR(be)).

There are however a number of OCL constructs that cannot be ex-
pressed in Alloy. Alloy has a very simple type system and does not support

10 Kyriakos Anastasakis et al.

Table 2 Correspondence between OCL and Alloy expressions

OCL expression Alloy expression

col → forAll(v:Type | be) all TR(v):TR(col) | TR(be)

col → exists(v:Type | be) some TR(v):TR(col) | TR(be)

expr1 and expr2 TR(expr1) && TR(exp2)

expr1 or expr2 TR(expr1) || TR(expr2)

not expr ! TR(expr)

col → size() #TR(col)

col → includes(o:T) TR(o) in TR(col)

col → excludes(o:T) TR(o) !in TR(col)

col1 → includesAll(col2) TR(col2) in TR(col1)

col1 → excludesAll(col2) TR(col2) !in TR(col1)

col1 → including(o:T) TR(col1) + TR(o)

col1 → excluding(o:T) TR(col1) - TR(o)

col → isEmpty() #TR(col) = 0

col → notEmpty() #TR(col) != 0

expr.PropertyCallExpr TR(expr).TR(PropertyCallExpr)

if cond then expr1 else expr2 TR(cond) ⇒ TR(expr1) else TR(expr2)

expr.oclIsUndefined #TR(expr) = 0

expr → oclIsKindOf(o:T) TR(o) in TR(expr)

col1 → union(col2) TR(col1) + TR(col2)

col1 → intersection(col2) TR(col1) & TR(col2)

col1 → product(col2) TR(col1) → TR(col2)

col → sum() sum TR(col)

col1 → symmetricDifference(col2) (TR(col1) + TR(col2)) - (TR(col1) & TR(col2))

attributes overriding. As a result OCL’s casting operations are not required.
Additionally as a purely declarative language, Alloy does not support ex-
pressions with imperative flavour such as OCL’s iterate operation. OCL
statements that do not appear in Table 2 cannot be generally translated to
Alloy. OCL constraints that cannot be mapped to Alloy are not handled
by our model transformation. The modeller needs to be able to express the
constraints, using the OCL subset depicted in Table 2.

6 Differences between UML and Alloy which Influence the

Model Transformation

Although both UML and Alloy are designed to be used in Object-Oriented
(OO) paradigm, the two languages have different approaches to some of the
fundamental issues of OO, including inheritance, overriding and predefined
types [26]. Some of these differences directly influence the model transfor-
mation process. In this section, we shall discuss such differences and explain
how our approach deals with them.

On challenges of Model Transformation from UML to Alloy 11

6.1 Object Ids vs Atoms:

Since each Class is mapped to an Alloy Signature, the instances of a Class,
will map to an instance of a Signature. In UML a Class denotes a set of
object identifiers (Object Ids) [38, Ap. A.1.2.1]. In Alloy a Signature denotes
to a set of atoms. Atoms are indivisible (they cannot be divided into smaller
parts), immutable (their properties remain the same over time) and uninter-
preted (they do not have any inherent properties) [27]. An Object Id in UML
is used to uniquely identify an instance of a Class, in the same way that an
atom in Alloy, identifies an instance of a Signature. The notion of Object
Id maps conceptually to the notion of an atom when dealing with static
systems. However, considering the notion of Object Ids conceptually equal
to the notion of atoms, has certain implications when modelling dynamic
systems, as described in Section 6.9.

6.2 Redefinition:

A UML Property or Operation of a subclass can redefine one or more Prop-
erties or Operations of one or more of its superclasses. According to the
UML standard, a redefining property can define additional constraints on
the redefined property [40, Sec. 7.3.46]. A redefining Property has usually
the same name as the redefined Property. The notion of redefinition corre-
sponds to the well known concept of operation and attribute overriding in
Object-Oriented programming.

Alloy does not directly support the notion of redefinition. More specifi-
cally signatures that belong to the same hierarchy may not define fields with
the same name. This is also the stance the UML formal semantics takes on
this issue [38, p. 182]. Our approach follows the UML formal semantics view
on the issue and as discussed in Section 7, we do not allow UML class dia-
grams with redefinition in our approach. As a result a diagram such as that
of Figure 4, cannot be directly represented in Alloy, since the SoftwareClient
has an attribute (name), which redefines the attribute of the Client class.

6.3 Multiple Inheritance:

A UML class can extend more than one superclasses. For example, in Fig-
ure 6 an instance of a CameraPhone is an instance of both a Phone and a
Camera at the same time [42, Sec. 3.4.1]. More formally: I (CameraPhone) =
I (Phone) ∩ I (Camera), where I (CameraPhone), I (Phone) and I (Camera)
denote to the set of Object Ids of the instances of the CameraPhone, Phone
and Camera classes respectively.

Using our transformation rules, the diagram of Figure 6 will be trans-
formed to an Alloy model with three signatures, a Phone, a Camera and a
CameraPhone signature. By definition top-level Alloy signatures (like Cam-
era and Phone) define disjoint sets. More formally: I (Phone) ∩ I (Camera)
= ∅.

12 Kyriakos Anastasakis et al.

Fig. 6 Multiple Inheritance

It is therefore evident that in this case: I (CameraPhone) = ∅. In general,
multiple inheritance cannot be directly represented in Alloy. As we will
demonstrate in Section 7, we do not allow UML class diagrams with multiple
inheritance to be defined in our method.

In some specific cases, multiple inheritance can be represented in Alloy,
as demonstrated by Jackson [27, p. 94]. More specifically, if the classes
participating in the multiple inheritance have a common superclass, they
can be expressed in Alloy. However, this case of multiple inheritance is not
generic enough to be incorporated in our method.

6.4 Collections

UML has inherent support for a number of collection constructs. In partic-
ular the OCL standard defines Sets, Bags, OrderedSets and Sequences) [38,
Sec. 7.5.11]. On the other hand Alloy only supports Sets. Recently sequences
have been introduced to the Alloy language. Here we show that it is possible
to express the UML concepts of Bags and OrderedSets using the notion of
Sequences in Alloy. An Alloy Sequence is defined as a relation between an
integer value and a user defined signature. The integer value denotes to the
index of the element in the Sequence.

In UML a Bag is collection like a Set, but allows elements to appear more
than once in the collection. A Bag can be represented as an Alloy Sequence,
ignoring the integer value, which represents the index of the element in
the Sequence. Similarly a UML OrderedSet is a Set, whose elements are
ordered. Again this can be easily expressed using an Alloy Sequence, with
an additional constraint that no two distinct elements in the Sequence can
be the same.

Nested Collections: The UML allows for nested collection (i.e. Collec-
tions of Collection) [38, Sec. 7.5.12]. In Alloy on the other hand all collections
are flat and it is not possible to express higher-order relations [27, p. 41].
As a result if a collection of a collection is defined in OCL, it is rejected by
our transformation.

6.5 Namespace:

All UML model elements are defined in a namespace [38, p. 72]. For ex-
ample, classes in a class diagram are usually defined in the namespace of

On challenges of Model Transformation from UML to Alloy 13

the package, while attributes are defined in the namespace of the class they
belong to.

Model elements of an Alloy model also belong to a namespace [27, p.
254]. However, the notion of a namespace in Alloy and UML are slightly
different. For example, the UML specification defines that: ‘The set of at-
tribute names and class names need not be disjoint ’ [38, p. 178]. In Alloy on
the other hand signature names, have to be distinct from their field names.

This difference between the two languages is tackled in our UML profile
for Alloy described in Section 7. For example our profile does not allow
attributes names and class names to be the same. This ensures that no
naming conflicts appear in the generated Alloy model.

6.6 Sets, Scalars, Relations and Undefinedness:

Alloy treats sets and scalars as relations. In particular in Alloy a relation
denotes to a set of tuples. The number of elements in each tuple depends on
the arity of the relation. For example, a binary relation is represented by a
2-tuple. A set is represented as a unary relation and a scalar is a singleton
unary relation [27, p. 45].

In UML on the other hand, sets and scalars have the standard meaning
they have in set theory. The equivalent of relations in UML is an association
between classes, which is represented as a set of tuples [38, p. 184].

These differences in the two languages stem from the fact that UML
and Alloy have different design philosophies. For example, one of the pur-
poses of UML is to represent Object Oriented programming concepts, where
the distinctions between scalars and sets is clear. On the other hand Alloy
was designed for analysing abstract specifications and the uniform way it
deals with sets, scalars and relations contributes to its succinct syntax and
leverages its expressiveness [48].

To explain this consider the navigation dot (.). In Alloy it is treated as
the relational join [27, p. 59]. As a result navigating over an empty relation
denotes to an empty set. Consequently Alloy doesn’t need to address the
problem of partial functions by introducing a special undefined value, as in
UML [38, Ap. A.2.1.1]. Let us assume in the model of Fig. 4, the multiplicity
of the at role is 0..1 (i.e. a Client can be related to 0 or 1 Attackers). Now,
let us consider the following OCL fragment: ‘self.at ’.

In UML if the instance of the Client in which this OCL invariant is
evaluated is related to no Attacker, the expression ‘self.at ’ will denote to an
undefined value. In an equivalent Alloy model, such an expression evaluates
to an empty set.

In order to transform OCL’s three valued logic into Alloy’s two valued
logic, we make a counter intuitive, but necessary assumption. That the
empty set evaluates to the same as the undefined value. This is due to
OCL’s implicit conversion of scalars to sets. In particular according to the
OCL specification [38, p. 81], if a collection operation is applied on a scalar,

14 Kyriakos Anastasakis et al.

the scalar is automatically converted to a set. Assume the following two
statements in the context of the Client, in our example shown in Figure 4:

inv collSize: self.at -> size() = 0

inv undef: self.at.oclIsUndefined()

Both collSize and undef invariants evaluate to true if no Attacker is re-
lated to the Client. Considering the empty set equal to the undefined value,
is an important assumption that allows us to translate OCL statements to
Alloy. Such an assumption has also been made by Akehurst et al. [5] in their
translation of UML into Java 5.

In general the undefined value in OCL is used to denote the absence
of a value or a run time error [38, Ap. A]. If it is important to explicitly
model the absence of a value from a model element, it is possible to do so on
the model level. For example, the NameType enumeration type of Figure 4
defines an enumeration literal called null. This literal represents the absence
of a value in an attribute of type NameType in the model and can be used
in OCL in the following way:

context Client

inv: (self.name <> NameType::null) implies

(expression with the name attribute not null)

6.7 Aggregation and Composition:

In UML special kinds of binary association exist to denote a Whole-Part Re-
lationship (WPR) [8] between classes. More specifically the UML provides
the notions of aggregation (shared aggregation) to denote weak ownership
and composition (composite aggregation) to denote strong ownership. The
exact meaning of aggregation and its difference from composition has re-
ceived considerable attention. Fowler refers to aggregation as ‘one of the
most frequent sources of confusion’ [17, p. 67] and Rumbaugh et al. suggest
to ‘think of it as a modeling placebo’ [43, p. 148], while Henderson-Sellers
and Barbier ask: ‘what is this thing called aggregation? ’ [24]. Moreover the
UML standard specifies that: ‘Precise semantics of shared aggregation varies
by application area and modeler ’ [40, Sec. 7.3.2].

It is therefore evident that there is not a clear view on the exact seman-
tics of aggregation and composition amongst the UML community. However,
despite the different interpretations, there are some primary properties of
aggregation and composition that most researchers agree on [20, 43]. More
specifically the weak ownership semantics of aggregation do not allow self
references 1. The strong ownership semantics of composition, in addition to
not allowing self references, impose that in an WPR, the part can exist only
if an instance of the whole exists and two wholes cannot share the same
part(s).

1 In a Whole-Part Relationship, the whole cannot be part of itself.

On challenges of Model Transformation from UML to Alloy 15

These rules have been formalised by Gogolla and Richters [20]. The au-
thors present a methodical way of refactoring aggregations or compositions
as standard binary associations enriched with OCL constraints to depict the
additional semantics of aggregation and composition. This methodology is
well suited for our transformation to Alloy, since we have already defined
the transformation rules for binary associations and a subset of OCL. As
a result we have not explicitly defined transformation rules for aggregation
and composition. We require that they are expressed as standard binary
association and OCL is used to capture the additional semantics.

6.8 Predefined Types:

The UML specification defines a number of primitive types (e.g. String,
Real, etc.). Those types can be used when developing UML models. For
example, the attribute browser of the WebClient class in Fig. 4 is of type
String.

On the other hand, Alloy has a simple type system and the only pre-
defined type it supports is Integers. Other UML’s predefined types can be
modelled in Alloy indirectly. For example, a String, can be modelled as a
sequence of characters and each character can be represented by an atom.

Therefore, while in UML primitive types and their operations are part
of the metamodel, in Alloy they need to be defined on the model level (i.e. a
String has to declared as an Alloy signature). Our transformation requires
that all primitive types, apart from Integers, are defined by the modeller on
the model level as UML Datatypes.

6.9 Static vs Dynamic Models:

Models in Alloy are static, i.e. they capture the entities of a system, relation-
ship between the entities and constraints that the system must satisfy. An
Alloy model defines a single instance of a system, on which the constraints
are satisfied. In particular, Alloy models do not have an inherent notion of
states, or any form of built in notion of statemachines [27, Ap. B.5.1]

In UML the term ‘static’ is used to describe a view of the system, that
represents the structural relations between the elements as well as the con-
straints and the specification of operations with the help of pre and post
conditions. In UML, unlike Alloy, static models have an inherent notion of
states. A system state is made of the values of objects, links and attributes
in a particular point in time [38, p. 185].

Since UML has an implicit notion of states, while Alloy does not support
it directly, additional complexity arises in the transformation. To explain
this, let us assume the following OCL statement is the definition of the
receiveResult() operation of the Client:

context Client::receiveResult():void

16 Kyriakos Anastasakis et al.

pre: self.resultPage = ResultPageType::nullPage

post: self.resultPage = ResultPageType::homePage

To evaluate this expression two consecutive states are required, one to
represent the state before the execution of the operation (precondition)
and another to represent the state after the execution of the operation
(postcondition). The OCL standard formally specifies the environment on
which pre and postconditions are evaluated [38, p. 210].

If the specification of the receiveResult() operation, was directly trans-
lated to Alloy it would translate to:

pred receiveResult(act:Client){

act.resultPage = nullPage

act.resultPage = homePage }

However, such an Alloy specification leads to an inconsistent model.
This is because the value nullPage and homePage are assigned to the re-
sultPage field, at the same time. This leads to a logical inconsistency, as
both statements cannot be true (i.e. resultPage will either be the nullPage
or homepage, but not both at the same time).

Alloy has been successfully applied to the analysis of dynamic sys-
tems [14, 45, 49]. The analysis of dynamics in Alloy is carried out by mod-
elling explicitly the notion of state on the model level. To model the notion
of state in Alloy, a number of patterns have been proposed in the literature.
The most popular are the global state [3] and tick based modelling [45].
Elaborating further on how a state can be represented in Alloy is out of the
scope of this work.

The solution we propose to this issue, is similar to existing Alloy ap-
proaches, which model the state on the model level. More specifically as
demonstrated in [10], we require a class that represent the states, to be
modelled on the class diagram. The dynamic stereotype presented in Sec-
tion 7.2 is used to annotate the association ends whose values change over
time. This is done, so that the modeller does not need to specify frame condi-
tions [11] for all class properties, but only for those stereotyped, whose value
may change from state to state (i.e. properties stereotyped as dynamic).

In the model of Figure 4 we do not need to use the notion of state on
the model level, because we are only interested in the messages exchanged
between the Client and the Server, but not the order of the messages ex-
changed. Consequently no more than one state is required to analyse it.

To address the issues presented in this section, we have developed a
UML profile for Alloy, which is presented in the next section.

7 UML Profile for Alloy

This section presents a UML profile for Alloy. There are two main reasons
for defining such a profile. Firstly it defines additional constraints on the

On challenges of Model Transformation from UML to Alloy 17

UML metamodel elements, in order to prevent UML models which can-
not be translated to Alloy. As discussed previously, Alloy does not directly
support UML notions, such as multiple inheritance. Consequently a class
diagram created on the basis of the profile cannot include multiple inheri-
tance. The second purpose of this profile is to define a number of stereotypes,
which can be used by the modeller to express Alloy concepts, such as the
scope 2 in UML. As discussed later on, the stereotypes provide the ability
to automatically analyse UML class diagrams via Alloy.

7.1 Profile Constraints

Figure 2 shows a simplified version of the UML Kernel package [40]. This
metamodel allows the creation of UML class diagrams that cannot be rep-
resented in Alloy. More specifically it is possible to develop a UML class
diagram with attributes redefinition. In order to overcome this problem, we
have extended the UML metamodel elements, with additional constraints
that forbid the definition of UML concepts, which are not representable in
Alloy. For example a UML NamedElement may or may not have a name [40,
Sec. 7.3.3]. Our profile requires that all elements have a (unique) name for
identification. The following OCL statement is used by our profile to depict
this constraint:

context Class

inv: self.name -> size() = 1 and self.name <> ""

An important extension of UML by the profile is that by default Proper-
ties are readonly. Once the value of a Property is set, it cannot be changed.
This is because the fact that the equivalent notion of Properties in Alloy
(i.e. fields) are immutable, as discussed in Section 6.9.

Such supplementary constraints, which are presented in Appendix B,
were imposed on the UML metamodel to allow for the automated translation
of a UML class diagram to Alloy. In addition to those constraints we have
also defined a number of stereotypes that can be used to express Alloy
concepts in UML.

7.2 Stereotypes

As discussed in Section 2, the Alloy language has notions such as the scope,
simulation and assertion commands, which allow it to perform fully auto-
mated analysis of models. On the other hand the UML does not have such
concepts. Since our work aims to make UML class diagrams fully analysable,

2 The term scope here is used in the context of Alloy [27, Sec. 5.1.2] (i.e. a scope
is a number that denotes to the maximum number of model elements the Alloy
Analyzer will use for the analysis).

18 Kyriakos Anastasakis et al.

Fig. 7 The Stereotypes defined by our profile

using Alloy, we need to extend the UML class diagram notation to intro-
duce concepts such as the scope, simulation and assertion commands. This
is achieved with the help of the stereotypes presented in this section.

Figure 7 depicts the stereotypes defined in our UML profile for Alloy.
The analysis stereotype is used on Packages, scopedElement, singleton and
enforce is used on Classes and the assertion and simulation stereotypes
are used on Constraints. Finally the dynamic stereotype can be used on
Properties, to change the the default readonly metaatribute. In the following
we briefly introduce the stereotypes and their use.

analysis: This stereotype is used on UML Packages that are going to be
analysed using our method. A UML class diagram is required to have exactly
one Package stereotyped as analysis. The analysis stereotype defines two
attributes (also called tagged values), the defaultScope and intScope. These
tagged values are used during the transformation to set the default Alloy
scope and the scope for integer numbers respectively. A defaultScope and
intScope are positive integer numbers. Following Alloy’s approach, if no
defaultScope tagged value has been defined in the model, the default is 3.
Similarly if no default tagged value has been defined in the model for integer
values, the default scope is 4.

scopedElement: Each class in a class diagram can be stereotyped as a sco-
pedElement. The scopedElement stereotype defines a tagged value (scope),
which is used to limit the number of instances of an element when a system
instance is being checked by the SAT solver. This is used to override the de-
faultScope attribute of the analysis stereotype in order to define a different
scope for the particular class on which the stereotype is applied.

singleton: A singleton stereotype can be applied to a Class. Classes anno-
tated with this stereotype can only have exactly one instance in the model.

enforce: In general an instance of a UML class diagram may be partial
(i.e. some classes may not have any instances). This stereotype is used on
classes that are required to have at least one instance during the analysis.

On challenges of Model Transformation from UML to Alloy 19

simulation: In Alloy, a first-order logic statement can be used to simulate
a model. This statement corresponds to the Alloy run command [27, Section
4.6]. Similarly in a UML class diagram an OCL constraint can be used to
simulate the model. We use the simulation stereotype for this purpose. More
specifically an OCL statement, which is stereotyped as simulation, will be
automatically translated to an Alloy simulation (run) command. An Alloy
run command can be used with the Alloy Analyzer to create a random
instance of the model that conforms to the statement and the constraints
of the model.

assertion: Similarly to simulation commands, assertion commands can be
used to check if a statement that depicts a property of the system, is satisfied
by the model. In a class diagram, an OCL statement can be used to depict
an assertion. The assertion stereotype can be used on OCL statements,
which will be translated to Alloy assertions.

dynamic: As we discussed earlier in Section 7 our UML profile for Alloy
enforces that by default Properties (i.e. Attributes and Association Ends)
are readonly. However, often values of properties change over time. Such
properties need to be stereotyped as dynamic.

8 Implementation and Analysis

This section presents a brief overview of our tool that implements the rules
presented in Section 5. This sections ends with a description of the outcome
of the analysis of the SSL protocol presented in Section 4.

8.1 Implementation

The transformation rules presented in the previous section, have been im-
plemented in a tool called UML2Alloy. The tool uses the Kent Modelling
Framework (KMF) [1] XMI reader and OCL parser. The transformation
rules from UML to Alloy are implemented in the SiTra [6] model transfor-
mation engine.

UML2Alloy parses an XMI file with the UML class diagram and OCL
constraints and generates an Alloy model. The tool interacts with the Alloy
Analyzer API to automatically analyse the generated Alloy model. Cur-
rently the results of the analysis are represented using the Alloy Analyzer
output. In the future we plan to represent the result of the analysis using
UML object diagrams.

The current version of the tool requires human intervention to carry
out the translation (for example to set the scope of the model elements),
however in a future release of the tool, we will provide support for the UML
Profile for Alloy presented in Section 7, which will allow fully automated
analysis of UML models compliant with the profile.

20 Kyriakos Anastasakis et al.

Fig. 8 Scenario of Traceability of the Unsat Core

One of the most powerful features of the Alloy Analyzer, is the Unsat
Core [44] facility. In the case of overconstrained models (i.e. models for which
the Analyzer cannot provide an instance, due to conflicting constraints), the
Unsat Core functionality can locate the conflicting statements that cause
the inconsistency. In order to incorporate this feature in our work, we had
to extend SiTra with Model to Model (M2M) and Model to Text (M2Text)
tracing.

Figure 8 illustrates a scenario of how the Alloy’s Unsat Core functional-
ity can be used in our UML2Alloy transformation framework. Initially the
UML/OCL model is transformed to an instance of the Alloy metamodel
(Alloy AST), defined in Section 3.2. This is a Model to Model (M2M)
transformation. The instance of the Alloy metamodel is then transformed
to the Alloy textual notation, through a Model to Text (M2Text) transfor-
mation. The Alloy Analyzer API is then used to analyse the Alloy model. If
the Analyzer cannot produce an instance, it returns the positions of the con-
flicting statements in the Alloy textual representation. Using our M2Text
tracing, we can trace back those positions to the Alloy AST elements re-
sponsible for the inconsistency. Finally using the M2M tracing we can trace
back the original UML/OCL model elements responsible for the conflict.

The next two subsections present how UML2Alloy can be used to analyse
the e-business system presented in Section 4.

8.2 Description of the Secure System

We applied our model transformation rules from UML to Alloy on the ex-
ample model presented in Sect. 4 for the man-in-the-middle attack. A man-
in-the-middle attack allows an attacker to intercept and use information
that may be confidential. We consider two variations of this type of attack.
The first is an active attack - all messages flow through the attacker and not
through a direct association between a requestor (e.g. Client) and authenti-
cator (e.g. Server). The attacker poses as the authenticator from the point
of view of the requestor, and as the requestor from the point of view of the
authenticator. The attacker relays messages between the requestor and the
authenticator until private information has been obtained. The attacker can
change information in messages, and messages can be inserted or deleted
into the communication flow.

On challenges of Model Transformation from UML to Alloy 21

In the second variation, the attacker does not change information in mes-
sages, insert or delete messages in the communication, but rather eavesdrops
on the message flow between the requestor and the authenticator. This kind
of attack is a passive attack. The information obtained can be used later to
impersonate the requestor, or to access confidential information.

In order for the attacker to obtain user information, the attacker can
eavesdrop until this information passes by (i.e. in our example, a homePage
containing sensitive user information is returned to the Client). This rep-
resents a passive attack on the login service, and encryption schemes such
as that used by SSL are enough to prevent it. The attacker can also imper-
sonate the Client, changing the information flowing to the Server in hopes
of tricking the Server to reveal confidential information, such as a session
key that will then allow the attacker to intercept and decode confidential
messages. In this active attack case, authentication of the message sender
then becomes important so that Server can trust that a message containing,
for example, SSL protocol information, actually comes from the Client.

In an active attack against an SSL-protected Server, the following steps
occur:

1. The attacker substitutes its own certificate in the first message from the
Server to the Client.

2. If the Client is not performing a full server certificate validation (i.e.
the IP address in the certificate is not checked against the Server IP
address, or the attacker has managed to create a certificate with the
Server IP address that still appears to be signed by a trusted certificate
authority), it will use the attacker public key instead of the Server public
key to encrypt the next message.

3. The attacker can decrypt this message using its private key, then re-
encrypt the message using the Server’s public key. Once the attacker has
access to this message from the Client, it can create session encryption
keys and other SSL secrets just like the Client and the Server.

4. The attacker must keep track of all handshake messages sent by the
Server and the Client, then intercept and change digest messages created
from these handshake messages, as part of the SSL protocol. Please see
the SSL specification for a complete description of the SSL protocol [46].

8.3 Analysis via UML2Alloy and Results

The original version of the UML model of Figure 4 (i.e. without the Soft-
wareClient and WebClient classes, which were added to emphasise the dif-
ferences between UML and Alloy) was translated to Alloy, using UML2Alloy.
The assertion that must be validated is that if the Attacker obtains the se-
cret session key, the handshake should always fail. This assertion can be
specified using OCL:

context Client

22 Kyriakos Anastasakis et al.

inv sameKeySuccess: Client.allInstances() -> forAll(ac:Client |

ac.loginAborted = ResultType::r_false implies (

ac.cKey = SessionKeyType::symmKey and

ac.at.sKey = SessionKeyType::symmKey

and ac.at.aKey <> SessionKeyType::symmKey))

This OCL statement was automatically transformed to the following
Alloy assertion:

assert sameKeySuccess{ all ac:Client | ac.loginAborted = r_false

implies (ac.cKey = symmKey && ac.at.lm.sKey = symmKey &&

ac.at.aKey != symmKey) }

We checked this assertion for the case of the active attack described
in the previous section (i.e. when the Attacker changes information in the
messages exchanged between the Client and the Server). The analysis was
carried out for a scope of six. This means that the analyser probed to
find an instance of the model that violates the assertion using up to six
instances of each model element. In the case of an Active attacker the Alloy
Analyzer produced a counterexample, i.e. an instance of the model where
the Attacker had possession of the symmetric key and thus access to the
information exchanged between the Client and the Server.

Step number 2 above points out the problem that an active attack can
cause. If the Client does not verify the certificate from the Server com-
pletely, it can be fooled into using the Attacker public key to encrypt a
critical message. This message normally allows the Client and Server to in-
dependently compute session and digest keys. Allowing the Attacker access
to this message allows the Attacker to also independently compute these
keys.

The same assertion was also checked for the case of a passive attack for
a scope [27, p. 140] of six. A scope of six means that the Alloy Analyzer
will attempt to find an instance that violates the assertion, using up to six
instances for each of the entities defined in the class diagram of Fig. 4 (for
example, Client, Attacker, Server). The assertion produced no counterex-
ample for the case of the passive attack (i.e. when the Attacker only relays
information between the Client and the Server).

9 Discussion

This section presents a discussion on further details of our approach and
suggests directions for future work.

A difference between UML and Alloy, is that while the former has two
concepts to depict relations between model elements (i.e. Association and
Properties) the latter has only one concept (i.e. Fields). In Section 5.1 we
explained that we translate UML Properties to Alloy Fields. In fact the
notion of a UML Association, maps more precisely to the notion of an

On challenges of Model Transformation from UML to Alloy 23

Alloy Field. A UML Association denotes to a set of tuples whose values
refer to typed instances [40, Sec. 7.3.3]. Similarly an Alloy Field denotes
to a set of tuples, whose values refer to the atoms of the Signatures of the
Field declaration.

The reason for mapping a UML Property to an Alloy Field is explained if
we take into account OCL. OCL uses the Property name as a path reference.
Consequently our UML Property to Alloy Field transformation allows us to
translate OCL to Alloy without additional complications.

Another interesting remark is the expressiveness of our approach, de-
picted in Figure 9. As discussed previously, OCL has a number of notions
(such as the iterate and casting operations), which cannot be expressed in
Alloy and are thus not supported by our work. On the other hand Alloy’s
relational logic, provides a number of operators to directly manipulate rela-
tions (for example it is easy to express the transitive closure or the transpose
of a binary relation [27]). OCL does not directly support such operations.
Therefore it is not possible to take advantage of the full expressive power
of Alloy, without extending OCL. Consequently the expressiveness of the
expressions supported by our work is the intersection of the expressions
supported by OCL and Alloy.

Fig. 9 Expressiveness of Alloy, OCL and UML2Alloy

10 Related Work

Formalising UML for the purpose of analysis is a popular approach. Evans
et al. [15] propose the use of Z [51] as the underlying semantics for UML.
Marcano and Levy [33] advocate the use of B [2], while Kim [29] makes use
of an MDA method to translate a subset of UML to Object-Z. Unlike our
method, which is based on Alloy’s ability for fully automated analysis, these
methods rely on theorem provers to carry out the analysis, which requires
human intervention and special experience that complicate the process of
analysis.

A number of UML tools also provides support for analysis. For example,
the USE tool (UML Specification Environment) [42] is a powerful instance
evaluator with the ability of simulation. More specifically it is possible to
use the USE tool to generate snapshots that conform to the model. It is
also possible to check if a specific instance of the model conforms to the
constraints. This method requires that the instances to be checked are gen-
erated manually. To overcome this issue Gogolla et al. [21] suggest a scripting

24 Kyriakos Anastasakis et al.

language that automates the process of generating instances. This method
can be potentially used to automatically check a large number of instances
against the model. In contrast, our approach uses the Alloy Analyzer, which
automatically searches the state space exhaustively (up to the user specified
scope), resulting in a higher degree of confidence. However, unlike our ap-
proach USE provides support for UML concepts, which are not expressible
by Alloy and therefore not supported by our method. For example USE has
inherent support for OCL’s three valued logic and multiple inheritance.

Another category of UML tools rely on theorem provers for conducting
the analysis. The KeY tool [9] formalizes OCL with the help of dynamic
logic [22] and provides an interactive theorem prover environment for the
analysis of UML models and their implementation. HOL-OCL [12] is an-
other tool that transforms OCL to Higher Order Logic (HOL) formulas
that can be analysed by the Isabelle [35] theorem prover. All these meth-
ods require guidance and special expertise to operate the theorem prover
environment. Most application developers lack such expertise. On the other
hand, our method relies on SAT-solvers and as a result the analysis if fully
automated.

Using Alloy to formalise UML has also received considerable attention.
More specifically Dennis et al. [14] use Alloy to expose hidden flaws in the
UML design of a radiation therapy machine. Georg et al. [18] have used
Alloy to analyse the runtime configuration of a distributed system. Unlike
our work, those approaches conduct the translation from UML to Alloy
manually, a procedure which is tedious and error prone.

A number of secure systems have also been modelled and analysed di-
rectly in Alloy. Torlak et al. [47] have used Alloy to analyse man-in-the-
middle attacks. They introduce the idea of knowledge flow, which models
how knowledge (information) is exchanged between the participants of a
protocol handshake. In particular, like our method, they focus on the infor-
mation that the man-in-the-middle can possess, irrespective of the order the
messages are exchanged between the participants. The protocol under in-
vestigation was modelled directly in the Alloy language and analysed. They
used their method on the Needham and Schröeder [34] protocol and veri-
fied the existence of a flow already discovered by Lowe [32]. Their method
was developed to prove certain properties of security protocols, thus they
formally prove the completeness and soundness of their method. It is not
possible to easily follow such an approach, without knowledge of formal
methods. On the other hand our study presented in Section 8 is used as a
proof of concept for our UML2Alloy transformation and it is using concepts
such as UML class diagrams and OCL, which are more familiar to the aver-
age software developer. Another study, which has successfully used Alloy to
model secure systems, was conducted by Ramananandro [41]. The author
exposed defects in the Z specification of a smart card system, by translating
it to Alloy. Such studies demonstrate the suitability of Alloy as a language
for the analysis of models.

On challenges of Model Transformation from UML to Alloy 25

Finally there have been studies on the comparison of languages of UML
and Alloy [26, 23]. However, they do not use model driven approaches to
demonstrate the differences.

11 Conclusions and Future Work

This paper deals with the analysis of UML models captured as class di-
agrams, enriched with OCL statements, modelling various constraints on
the system. Using a model driven approach, UML models are automatically
transformed to corresponding Alloy representations. Alloy models can then
be analysed automatically, with the help of Alloy Analyzer. The emphasis
of this paper is on the underlying model transformation which maps UML
to Alloy.

The paper outlines differences between UML and Alloy, which influence
the transformation between the two languages. Such differences stem from
the different approaches adopted by UML and Alloy on fundamental ob-
ject oriented notions such as identifiers, inheritance, type system, partial
functions and handling of dynamic behaviour in models.

In this work, we also present a UML profile for Alloy. The profile im-
ports elements of the UML class diagrams metamodel and applied additional
constraints on them. This prevents instantiation of UML models, which can
not be automatically translated to Alloy, using our work. Additionally the
profile defines a number of stereotypes, which are used to represent Alloy
concepts, such as the scope and simulation commands in UML. The devel-
opment of the profile allows the fully automated analysis of class diagrams,
via Alloy.

A number of issues remain open for future research. In this paper we have
not presented any transformation rules for association classes, n-ary and
qualified associations. Observing the UML profile in Appendix B, it is clear
that it is not possible to express a class diagram with association classes or
n-ary/qualified associations. Our approach requires that those constructs,
need to be refactored to binary associations with OCL to represent the
additional semantics.

Fowler [17] presents a method called class promotion, to refactor asso-
ciation classes to binary associations with OCL. Akehurst et al. [5] present
an approach on how to translate qualified associations to standard binary
associations. In particular they replace a qualified association, with a class
that explicitly represents the qualified association semantics. Finally the ap-
proach described by Gogolla and Richters [19] can be employed to refactor
n-ary associations to binary ones. Translating association classes, qualified
and n-ary associations to Alloy remains for future research.

Another interesting direction for further research is to apply emerging
model transformation testing techniques [16, 31] on the method presented in
this paper. For example, it is important to test whether the UML to Alloy
transformation rules can generate a syntactically incorrect Alloy model.

bxb
Highlight

bxb
Note
Is this not going to cause ambiguity

bxb
Cross-Out

bxb
Replacement Text
This paper doesn't study transformation

bxb
Cross-Out

bxb
Replacement Text
In particular, the

bxb
Cross-Out

bxb
Replacement Text
doesn't

bxb
Cross-Out

bxb
Replacement Text
To apply the method suggested in the paper, such constructs must be

bxb
Inserted Text
 Examples of such refactoring techniques are the following. >>>join this pargraph and the next <<<

26 Kyriakos Anastasakis et al.

Applying such model transformation testing techniques can test if the model
transformation implementation satisfies certain criteria, such as coverage,
termination and syntactic correctness [31].

References

1. Kent Modelling Framework. http://www.cs.kent.ac.uk/projects/

kmf. School of Computing, University of Kent.
2. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge

University Press, New York, NY, USA, 1996. ISBN 0-521-49619-5.
3. Aditya Agrawal. Graph Rewriting and Transformation (GReAT): A

Solution For The Model Integrated Computing (MIC) Bottleneck. In
18th IEEE International Conference on Automated Software Engineer-
ing (ASE 2003), pages 364–368, Montreal, Canada, 2003. IEEE Com-
puter Society. URL http://csdl.computer.org/comp/proceedings/

ase/2003/2035/00/20350364abs.htm.
4. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,

techniques, and tools. Addison Wesley, Reading, MA, 1986.
5. D. Akehurst, G. Howells, and K. Mcdonald-Maier. Implementing as-

sociations: UML 2.0 to Java 5. Software and Systems Modeling, 6(1):
3–35, March 2007. doi: 10.1007/s10270-006-0020-1.

6. David H. Akehurst, Behzad Bordbar, M. J. Evans, W. G. J. Howells, and
Klaus D. McDonald-Maier. SiTra: Simple transformations in java. In
Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors,
Model Driven Engineering Languages and Systems, 9th International
Conference, MoDELS 2006, volume 4199 of Lecture Notes in Computer
Science, pages 351–364, Genova, Italy, 2006. Springer.

7. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi
Ray. UML2Alloy: A Challenging Model Transformation. In G. En-
gels, B. Opdyke, D.C. Schmidt, and F. Weil, editors, ACM/IEEE 10th
International Conference on Model Driven Engineering Languages and
Systems, volume 4735 of LNCS, pages 436–450, Nashville, USA, 2007.
Springer.

8. Alessandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi.
Part-whole relations in object-centered systems: An overview. Data &
Knowledge Engineering, 20(3):347–383, 1996.

9. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification
of Object-Oriented Software. The KeY Approach. Springer-Verlag New
York, Secaucus, NJ, USA, 2007. ISBN 354068977X.

10. Behzad Bordbar and Kyriakos Anastasakis. UML2Alloy: A tool for
lightweight modelling of Discrete Event Systems. In Nuno Guimarães
and Pedro Isáıas, editors, IADIS International Conference in Applied
Computing 2005, volume 1, pages 209–216, Algarve, Portugal, February
2005. IADIS Press. ISBN 972-99353-6-X.

11. Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame
problem in procedure specifications. IEEE Trans. Softw. Eng., 21(10):

On challenges of Model Transformation from UML to Alloy 27

785–798, 1995. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.
469460.

12. Achim D. Brucker. An Interactive Proof Environment for
Object-oriented Specifications. Ph.d. thesis, ETH Zurich, March
2007. URL http://www.brucker.ch/bibliography/abstract/

brucker-interactive-2007. ETH Dissertation No. 17097.
13. J. Cabot and E. Teniente. Transformation techniques for ocl constraints.

Sci. Comput. Program., 68(3):152–168, 2007. ISSN 0167-6423. doi:
http://dx.doi.org/10.1016/j.scico.2007.05.001.

14. Greg Dennis, Robert Seater, Derek Rayside, and Daniel Jackson. Au-
tomating commutativity analysis at the design level. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, pages 165–174. ACM Press, 2004. ISBN
1-58113-820-2. doi: http://doi.acm.org/10.1145/1007512.1007535.

15. Andy Evans, Robert France, and Emanuel Grant. Towards Formal Rea-
soning with UML Models. In Proceedings of the OOPSLA’99 Workshop
on Behavioral Semantics, 1999.

16. F. Fleurey, J. Steel, and B. Baudry. Validation in model-driven engineer-
ing: testing model transformations. In First International Workshop on
Model, Design and Validation, pages 29– 40, 2004.

17. Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Object Technology Series. Addison Wesley, 3rd
edition, 2003. ISBN 0321193687.

18. Geri Georg, James Bieman, and Robert B. France. Using Alloy and
UML/OCL to Specify Run-Time Configuration Management: A Case
Study. In Andy Evans, Robert France, Ana Moreira, and Bernhard
Rumpe, editors, Practical UML-Based Rigorous Development Methods
- Countering or Integrating the eXtremists., volume P-7 of LNI, pages
128–141. German Informatics Society, 2001.

19. Martin Gogolla and Mark Richters. Expressing uml class diagrams prop-
erties with ocl. In Object Modeling with the OCL, The Rationale be-
hind the Object Constraint Language, pages 85–114, London, UK, 2002.
Springer-Verlag. ISBN 3-540-43169-1.

20. Martin Gogolla and Mark Richters. Transformation rules for UML class
diagrams. In “UML”’: ’98: Selected papers from the First International
Workshop on The Unified Modeling Language “UML”: ’98, pages 92–
106, London, UK, 1999. Springer-Verlag. ISBN 3-540-66252-9.

21. Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Journal on
Software and System Modeling, 4(4):386–398, 2005.

22. D Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
23. Yujing He. Comparison of the modeling languages Alloy and UML.

In Hamid R. Arabnia and Hassan Reza, editors, Software Engineering
Research and Practice, SERP 2006, volume 2, pages 671–677, Las Vegas,
Nevada, USA, 2006.

28 Kyriakos Anastasakis et al.

24. B. Henderson-Sellers and F. Barbier. What is this thing called aggrega-
tion? In TOOLS ’99: Proceedings of the Technology of Object-Oriented
Languages and Systems, page 236, Washington, DC, USA, 1999. IEEE
Computer Society. ISBN 0-7695-0275-X.

25. Daniel Jackson. Alloy Analyzer website. http://alloy.mit.edu/.
26. Daniel Jackson. A Comparison of Object Modelling Notations: Al-

loy, UML and Z. Available at: http://sdg.lcs.mit.edu/publications.html,
August 1999.

27. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, London, England, 2006.

28. Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL.
In Satellite Events at the MoDELS 2005 Conference, volume 3844
of LNCS, pages 128–138. Springer, 2006. URL http://www.lina.

sciences.univ-nantes.fr/Publications/2006/JK06a.
29. Soon-Kyeong Kim. A Metamodel-based Approach to Integrate Object-

Oriented Graphical and Formal Specification Techniques. PhD thesis,
University of Queensland, Brisbane, Australia, 2002.

30. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture–Practice and Promise. The Addison-Wesley
Object Technology Series. Addison-Wesley, 2003. ISBN 032119442X.

31. Jochen Malte Küster and Mohamed Abd-El-Razik. Validation of model
transformations - first experiences using a white box approach. In
Thomas Kühne, editor, MoDELS Workshops, volume 4364 of Lecture
Notes in Computer Science, pages 193–204. Springer, 2006. ISBN 978-
3-540-69488-5.

32. Gavin Lowe. Breaking and fixing the Needham-Schröeder public-key
protocol using FDR. In TACAs ’96: Proceedings of the Second Interna-
tional Workshop on Tools and Algorithms for Construction and Anal-
ysis of Systems, pages 147–166, London, UK, 1996. Springer-Verlag.
ISBN 3-540-61042-1.

33. R. Marcano and N. Levy. Using B formal specifications for analysis and
verification of UML/OCL models. In Ludwik Kuzniarz, Gianna Reggio,
Jean Louis Sourrouille, and Zbigniew Huzar, editors, Blekinge Institute
of Technology, Research Report 2002:06., pages 91–105. Department
of Software Engineering and Computer Science, Blekinge Institute of
Technology, 2002.

34. Roger M. Needham and Michael D. Schröeder. Using encryption for
authentication in large networks of computers. Commununicatoins of
the ACM, 21(12):993–999, 1978. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/359657.359659.

35. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002.

36. OMG. MOF Core v. 2.0, . Document Id: formal/06-01-01. http://
www.omg.org.

On challenges of Model Transformation from UML to Alloy 29

37. OMG. MOF Models to Text Transformation Language Final Adopted
Specification, . Document: ptc/06-11-01. http://www.omg.org.

38. OMG. OCL Version 2.0, . Document id: formal/06-05-01. http://www.
omg.org.

39. OMG. UML Infrastructure, . Document: formal/05-07-05. http://

www.omg.org.
40. OMG. UML: Superstructure. Version 2.0, . Document id: formal/05-

07-04. http://www.omg.org.
41. Tahina Ramananandro. Mondex, an electronic purse: specification and

refinement checks with the alloy model-finding method. Form. Asp.
Comput., 20(1):21–39, 2007. ISSN 0934-5043. doi: http://dx.doi.org/
10.1007/s00165-007-0058-z.

42. Mark Richters. A Precise Approach to Validating UML Models and
OCL Constraints. PhD thesis, Universitaet Bremen, 2002. Logos Verlag,
Berlin, BISS Monographs, No. 14.

43. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language Reference Manual. The Addison-Wesley Object Tech-
nology Series. Addison-Wesley, Harlow, England, 1999.

44. Ilya Shlyakhter, Robert Seater, Daniel Jackson, Manu Sridharan, and
Mana Taghdiri. Debugging overconstrained declarative models using
unsatisfiable cores. In Proceedings of the 18th IEEE International Con-
ference on Automated Software Engineering, Montreal, Canada, pages
94–105. IEEE Computer Society, 2003.

45. Mana Taghdiri and Daniel Jackson. A lightweight formal analysis of a
multicast key management scheme. In Formal Techniques for Networked
and Distributed Systems - FORTE 2003, volume 2767 of Lecture Notes
in Computer Science, pages 240–256. Springer, 2003.

46. TLSWG. SSL 3.0 specification, 1996. http://wp.netscape.com/eng/
ssl3.

47. Emina Torlak, Marten van Dijk, Blaise Gassend, Daniel Jackson, and
Srinivas Devadas. Knowledge flow analysis for security protocols. Tech-
nical Report MIT-CSAIL-TR-2005-066, Computer Science and Artifi-
cial Intelligence Laboratory, MIT, Oct. 2005. Available at:.

48. Mandana Vaziri and Daniel Jackson. Some Shortcomings of OCL, the
Object Constraint Language of UML. In Technology of Object-Oriented
Languages and Systems (TOOLS 34’00), pages 555–562, Santa Barbara,
California, 2000.

49. Chris Wallace. Using Alloy in process modelling. Information and Soft-
ware Technology, 45(15):1031–1043, December 2003. Publisher: Elsevier
Science.

50. Manuel Wimmer and Gerhard Kramler. Bridging grammarware and
modelware. In Jean-Michel Bruel, editor, MoDELS Satellite Events,
volume 3844 of Lecture Notes in Computer Science, pages 159–168.
Springer, 2006. ISBN 3-540-31780-5.

51. Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and
Proof. Prentice Hall, Upper Saddle River, NJ, USA, 1996.

30 Kyriakos Anastasakis et al.

A Alloy Metamodel Well-Formedness Constraints

A number of (mainly syntactic) well-formedness rules have been defined
in accordance with the Alloy language specification [27]. The list of the
well-formedness constraints specified here were inferred from the Alloy ref-
erence manual and may not be complete. Our implementation is using the
Alloy Analyzer, which checks for such syntactic and semantic constraints.
Therefore if a not well-formed Alloy model is generated, the Alloy Analyzer
will flag an error, which will be displayed by our implementation. The pur-
pose of the well-formedness constraints presented here, is to apply model
transformation testing techniques in the future. The elements of the Alloy
metamodel referenced here are depicted in Figure 3. More specifically:

– An element (i.e. signature, field) has to have a name:

context Id

inv: not self.name -> isEmpty()

and self.name <> ‘‘’’

– All identifiers are unique:

context Id

inv: Id.allInstances -> forAll(i:Id |

(i<>self) implies (i.name<>self.name)

– A signature cannot extend itself:

context ExtendsSigDecl

inv: ExtendsSigDecl.allInstances() -> forAll(

s:ExtendsSigDecl | (s <> self) implies

(s.extends.refers <> self))

Additionally signature extension is acyclic. We do not provide OCL for
this constraint, because it requires recursion.

– A signature reference must reference a signature that has been declared:

context SigRef

inv: SigDecl.allInstances() -> exists(s:SigDecl |

s.declares -> includes(self.refers))

B UML Profile for Alloy Constraints on the UML Metamodel

Our UML profile for Alloy extends the UML Kernel package metamodel
elements with additional constraints. These constraints are presented here
informally (i.e. using natural language). So as not to replicate the UML
specification the elements of the Kernel diagram of the UML metamodel,
which our profile uses, the Kernel diagrams are not present here; instead
the reader is referred to the UML specification [40].

– A NamedElement is required to have a name.

On challenges of Model Transformation from UML to Alloy 31

– A NamedElement can not have a name, which is an Alloy keyword.
– The visibility attribute of a NamedElement is ignored during the trans-

formation, because a similar concept does not exist in Alloy3.
– Our transformation does not support package merge and package im-

port. As a result a NameSpace can not be related to an ElementImport
or a PackageImport. (see [40, p. 23])

– For a MultiplicityElement, isOrdered = false and isUnique = true always.
Defining the transformation rules for isOrdered = true or isUnique =
false remains for future work.

– The ValueSpecification of a MultiplciityElement can be either a Literal-
Integer or a LiteralUnlimitedNatural. Thus the lower and upper multi-
plicity value of a MultiplcitityElement can not be any custom expression,
as allowed by the UML standard.

– The UML metamodel allows for a TypedElement to be without a type [40,
p. 24]. Our profile requires that every TypedElement has a type.

– The only Constraint expressions supported by our approach are Opaque-
Expressions with OCL 2.0 as the language. All other Constraint expres-
sions are ignored.

– A Constraint needs to have exactly one Namespace.
– Currently we only allow the definition of Constraints in the context of

a Class. Constraints defined in other Contexts (i.e. Package) are not
allowed.

– All constraints are required to have a unique name.
– Class names and Property names need to be unique.
– A Package name cannot be the same as the name of any other NamedEle-

ment.
– The isLeaf metaatribute is ignored.
– We do not allow the definition of static attributes, association ends or

operations.
– A Classifier can be related to only one general Classifier. The general

association end, relates the Classifier with its direct [40, p. 26] ancestors.
This constraint forbids multiple inheritance.

– The Generalization isSubstitutable metaatribute is ignored.
– A BehavioralFeature may not specify any raisedExceptions.
– A Parameter of an operation can only be inout or return. No other kinds

of parameters are allowed.
– An Operation may not be redefined. More formally:

context Operation

inv: self.redefinedOperation -> isEmpty()

– Similarly an Attribute may not be redefined.
– A Class may not own nestedClassifiers (i.e. no inner classes are allowed).

3 Recently the notion of visibility has been added to the Alloy language, so it
might be possible to map UML visibility to Alloy. However this remains for future
research.

32 Kyriakos Anastasakis et al.

– If a Class is abstract it is required that it is directly or indirectly extended
by at least one concrete Class.

– A Property is readOnly by default. The dynamic stereotype can be used
to override this constraint.

– The Property aggregation is NONE. No Property can be defined, which
is aggregate or composite.

– The only PrimitiveTypes allowed in the model are Integers.
– A Package may not merge another Package.
– Currently our transformation does not deal with Package hierarchy. As

a result, no nestedPackages are allowed.
– A Package may own Classes, Associations, Generalizations, or DataTypes,

but no other metaelement.
– An AssociationClass cannot be specified in the class diagram.
– An Association may not be Abstract.
– An Association may not be redefined.
– Only binary Associations are allowed.
– Qualified association ends are not allowed.

