
A Pattern-based Approach to Business Process
Modeling and Implementation in Web Services

Steen Brahe1 and Behzad Bordbar2

1Danske Bank & IT University of Copenhagen, Denmark
stbr@itu.dk

2University of Birmingham, UK
b.bordbar@cs.bham.ac.uk

Abstract. There are often three groups of experts involved in the design and
implementation of business processes in a service oriented enterprise; business
analysts, solution architects and system developers. They collaborate with each
other to transform a high-level design created by a business analyst to a final
executable workflow, based on a service composition language such as the
Business Process Execution Language (BPEL). In this paper, we present a new
approach to support and semi-automate this transformation process, thus
producing applications of higher quality in shorter time. The idea is to capture
existing knowledge in the enterprise, which is required for transforming models
from one abstraction level to another, as reusable, parameterized patterns. These
patterns are used for tool based model transformations of the business
processes. To support our approach, we shall make use of Domain Specific
Modeling Languages (DSMLs) designed for each enterprise to capture models
of a business process at different levels of abstraction, each suitable for the use
of one of the groups of experts. The presented approach bridges the gap
between business and IT by providing customizable language-, tool- and
transformation support for the different groups of experts within the enterprise
and is illustrated by an example.

1 Introduction

Information technology is undergoing a rapid change of role from being a mere
provider of support for businesses, to an active role in driving the revenue and profit
[1]. There is an ever-increasing pressure on modern enterprises to adapt to the
changes in their environment by evolving to respond to any opportunity or threat [2].
To address such challenges, Service Oriented Architecture (SOA) has received
considerable attention as it provides the foundation for implementing business
processes via composition of (existing) services.

Using SOA and service composition requires a collaborative effort of different
groups of experts; business analysts model the process at a high conceptual level,
solution architects map such conceptual designs to architectural models, and system
developers implement architectural models in a service composition language such as
Business Process Execution Language (BPEL) [3]. However, there is a gap between

business and IT, due to different terminology, levels of granularity, varied models,
approaches, tools and method that each employ [2].

In this paper we present a new approach to close the gaps between different model
representations of a business process by using tool-based transformations from one
model to another. The main idea of the approach is to capture knowledge required for
the transformations as reusable, parameterized patterns, which can be used to conduct
the transformations via software tools. To achieve this, we combine Model Driven
Development (MDD) techniques [4] and Domain Specific Modeling Languages
(DSMLs) [5, 6] fitted specifically for the enterprise. DSMLs are used to capture
models of the business process at different abstraction levels for the three groups of
experts. This enables creation of precise, machine-readable models, which are also
easier to communicate. MDD techniques are used for automatic transformations of
models captured in domain specific languages. Hence, the presented approach aims to
assist the experts belonging to each of the three groups to create precise models of the
business process at their abstraction level and to support automatic propagation of
changes in the model created by the analyst to the model created by the architect and
further to the model created by the developer

The paper is organized as follows. Section 2 provides a brief introduction on
DSML, MDD and service composition. Section 3 presents the outline of our
approach. Section 4 illustrates the approach with the help of an example of a
mortgage approval process in an imaginary bank. Section 5 evaluates the approach.
Section 6 introduces a prototype implementation and section 7 contains the
conclusion.

2. Preliminaries

This section describes concepts and notions used in the rest of the paper. It introduces
the use of Domain Specific Modeling Languages, Model Driven Development, and
service composition as an implementation to support business processes.

2.1 Domain Specific Modeling Language

A general purpose process modeling language such as the Business Process Modeling
Notation (BPMN) [7] or UML activity diagrams [8] are not designed to support
enterprises in creating models using their own vocabulary and terminology. In
contrast, a DSML created specific for an enterprise allows the experts to create
models using locally known domain concepts and to provide domain specific
information to model precisely. In this paper we shall make use of domain specific
modeling languages, which are based on UML activity diagrams and extended for a
particular domain by a UML profile [8]. A profile is constructed by using the
extensibility elements: stereotypes, tagged values, and constraints [8], which are
machine readable modeling construct used by UML tools. For example, in an activity
diagram we may wish to specify, if a task is carried out by a software system or a
human agent. To do so, a profile containing the stereotypes <<Automatic>> and
<<HumanActivity>> can be applied to the activity diagram. Such stereotypes clarify if

a task is carried out by software or by a human being. A stereotype is applied to a task
to indicate the task type. Using these stereotypes or specialized task types extends
activity diagrams into a new (here, rather simplistic) language.

Through out the paper we use the term task for the single actions or activities that
make up a business process. We use the term task type to classify various tasks. For
example, HumanActivity is a task type, which embodies tasks such as posting a letter
or assessing a risk related to a mortgage by a human actor. A domain specific process
modeling language consists of a number of task types that can be used for modeling.

2.2 Model Driven Development

In the Model Driven Development (MDD) paradigm, models are treated as primary
software artefacts, from which the implementation is created with the help of software
tools [9]. Adopting MDD in a software development process is expected to speed up
development time and improves the quality of the delivered system.

The Model Driven Architecture initiative (MDA) [10] implements the MDD
approach around a set of technologies and standards like MOF, UML and XMI.
Central to the MDA is the idea of model transformations. Defining a transformation
from one kind of model, the source model, to another kind of model, the target model,
one is able to reuse that transformation for all source models of the same type. MDA
provides mechanisms to define DSMLs and a conceptual framework for defining
transformations between different DSMLs. Models are created by using constructs
from meta-models. Meta-models are models, which formally defines the syntax of
which models can be created. A meta-model defined for a specific domain can be
seen as a Domain Specific Modeling Language. Using MDA technologies, a meta-
model is defined either by using MOF, a meta modeling language, also called a meta-
meta-model [10] or by using the UML profiling mechanism [8]. A transformation is a
set of rules that specify mapping between the source and the target language. Several
methods exist for defining model transformations ranging from complex frameworks
utilizing languages as ATL and QVT to simple Java based frameworks as SiTra. For
simplicity, we describe transformation rules in English.

2.3 Service composition

Enterprises that adopt a Service Oriented Architecture often require combining
services to support their business processes. As a result, service composition
languages, such BPEL, are designed to allow combining and coordinate service
invocations. BPEL is an XML based-language for describing business processes and
business interaction protocols.

Research into the application of MDD techniques to the web service domain has
recently received considerable attention. A popular area of research is model
transformations from platform independent languages to Web service languages,
among others, Class Diagrams to WSDL [11] and Activity diagrams to BPEL [12]

3. A pattern based approach to model transformations

This section illustrates the outline of our method for bridging the gaps between
Business and IT using DSMLs and MDD techniques as depicted in Fig. 1.

Fig. 1: A pattern based approach for modeling collaboration

The analyst creates a business model of the process. The architect transforms this
model to an architectural model by applying a predefined and automatic
transformation to the business model. The transformation uses parameterized patterns
to create the architectural model. These patterns represent knowledge previously kept
by the architect of how to map business models to architectural models in the
enterprise. The patterns are parameterized, hence, the architect is asked to include
values of Additional Parameters required by the transformation. Additional
Parameters are information that are required in the architectural model, and which is
not represented in the business model. Following the creation of the architectural
model by the architect, a developer transforms it to an executable model in a similar
fashion. The architect and the developer do not change generated models; instead the
information they must provide to the final implementation is given as values of
additional parameters during transformation. The transformation workbench
incorporates this information into the generated models automatically. We shall now
describe the approach and the use of parameterized patterns in further details.

3.1 Parametrized patterns

Derived from Alexander’s work on architectural patterns, and now commonplace in
software engineering [13], patterns have been embraced by the workflow and
business process community [14, 15]. A pattern describes a recurring problem that
occurs in a given context, and based on a set of guiding principles, suggests a
solution. The patterns described in this paper are domain, or enterprise, specific, i.e.
they are specific to each individual enterprise. They make use of attributes and
parameters related to the models. Hence, we shall use the phrase parameterized
patterns [16] to distinguish such patterns from high level patterns described in [13]. In
our approach, a parameterized pattern includes three pieces of information; a pattern
template, additional parameters and transformation rules. Pattern templates capture

the overall structure of a task type in the source language represented at a lower level
of abstraction and is defined in the target language. Additional parameters specify
information required for fitting and customizing the pattern template for a specific
task. Transformation rules use values of the additional parameters and attribute values
of the task to change and fit the pattern template into the target model.

3.2 Automated transformation with the help of parameterized patterns

Fig. 2 depicts an outline of our approach for conducting model transformation
between different DSMLs using the information captured as design patterns. This
results in refinement of a model to a lower level of abstraction as depicted in Fig. 1.

Fig. 2 Model transformation between DSMLs with the help of patterns

Let us consider a source DSML Ls and a target DSML language Lt. For example, in
transformation from the Business model to the System model, see Fig. 1, Ls and Lt are
DSMLs for business analysts and system analysts, respectively. Suppose that Ls
consists of a number of domain specific task types E1, E2, … The aim is to transform
a source model ms defined in the language Ls to a target model mt defined in the
language Lt. To achieve this, a transformation T, which contains transformation rules
for mapping tasks from Ls to tasks of Lt, is used. The transformation T consists of a
number of sub transformations Tj, responsible for the transformation of one task type
Ej in the source model to a structure Sj in the target language Lt. The global
transformation T orchestrates and coordinates which sub transformations should be
executed at the different tasks contained in the source model ms, collects all generated
structures by the sub transformations and connects the generated structures together to
the target model mt.

A sub transformation Tj captures and represents a parameterized pattern, and hence
it represents domain specific knowledge of how to represent a task type at a lower
level of abstraction in the target language Lt. This makes the sub transformations the
most essential part of the transformation. The sub transformation Tj is defined by the
following elements:
1. Pattern template PTj. A model template defined in the target language Lt. The

model template represents the structure of the source task Ej transformed to Lt.

2. Additional Parameters (APj). When transforming a source task Ej to a lower
abstraction level (Lt), additional information may be required to enrich and
customize the pattern template so the structure Sj defined in the Lt can be
generated.

3. Transformation rules. Rules that specify how the pattern template PTj is
customized into the structure Sj. The rules make use of Values of Additional
Parameter (VoAPj) and values of attributes at the source task Ej.

4. Example: Process modeling in Estate Bank

In this section we shall illustrate the above approach with the help of an example of
an imaginary enterprise called Estate Bank. Fig. 3 models a simplified mortgage
approval process inside Estate Bank. When a customer requests for a mortgage at the
bank, a risk analysis (AssessRisk) task is executed. Based on the risk, either the loans
for the mortgage is created (CreateLoans) or the request is rejected (Reject).

AssessRisk

CreateLoans

Reject

High risk?

[No]

[yes]
Fig. 3 A mortgage approval process in Estate Bank

A business analyst defines the above model of the mortgage approval process. The
team of system architects and, subsequently, the team of developers must create an
executable system from such a model. Due to space limitation we shall only define a
subset of the modeling languages and transformations. Firstly, we describe subsets of
the different languages used by the three groups of experts. Then, we shall define the
essential sub-transformations for a selected number of task types from the different
languages. Finally, we illustrate the transformation of the CreateLoans task in the
mortgage process from the business level to the architect level and further to the
development level by using the different sub transformations.

4.1 A DSML for Business analysts

Consider a domain specific language LB containing three task types named
HumanActivity (E1

B), Automatic (E2
B) and Bundle (E3

B). A task of type HumanActivity
, as the name suggest, is a task which is handled by a human actor. For example, the
AssessRisk task used in Fig. 3 can be carried out by an employee at the bank, and
hence the task is a HumanActivity. An Automatic task is a task, which is executed by
a computer program. For example, the Reject task in the mortgage process is an
Automatic task type as a computer program in Estate Bank automatically is able to
send a rejection letter or an email. A Bundle task is one which is executed a number
of times. For example, in the mortgage process, creating a number of different loans

with different interest rate based on the customer request can be considered a bundle1.
These task types are high-level enough to be used by the business analyst for creating
business process models. For a full-blown realistic example in a real enterprise,
several additional types are required. However, the three task types are sufficient to
explain our approach.

4.2 A DSML for solution architects

The solution architect refines models created by the business analyst. As a result,
the DSML, called LA, used by the solution architect requires more information than
the DSML used by the business analyst. Here, we shall exemplify refinement of the
task type Bundle from the previous sections. Two of the task types used by the
solution architects are Loop (E1

A) and Service (E2
A), which are used in refining the

task type Bundle from the analyst language. A task of type Loop indicates that an
iteration should be executed over a sequence of other tasks. The architect may use a
Loop to indicate that a certain service must be called a number of times, e.g. creation
of several loans but with different interest rates. A task of type Service indicates
calling a specific service available for the use of Estate Bank, for instance creation of
a loan with a specific interest rate. Such services are identified by their name and
version. The architect determines which service to be executed and specifies the name
and version for the service task.

4.3 DSML for Developers

The developer uses a language similar to BPEL and WSDL. Considering these
languages express the system in lower level of abstraction, the DSML, called LD, for
the developer requires more information than the one for the solution architect. The
language is not specific to Estate Bank as it is similar to the BPEL language. We
present three exemplary task types: Assign (E1

D,), Invoke (E2
D) and Loop(E3

D). A
task of type Assign maps data between variables and is used to initialize input data to
service invocations. A task of type Invoke, similar to BPEL’s invoke, is described by a
WSDL document. A task of type Loop iterates over a sequence and can be compared
with a “for” or “while” loop in traditional programming languages. Models created in
the DSML for the developers can be compiled directly to BPEL code without any
additional parameters required. The models must be defined completely, i.e. the
models must be rich enough to be “executable”.

Table 2 depicts the task type Bundle, of the DSML for the business analyst and its
refinement by the architects and developers. Whenever a business analyst models a
task as a Bundle type (E3

B), for example the task CreateLoans in the mortgage process
Fig. 1, she/he must specify values of the required attributes of the task as listed in
Table 1. Firstly, the description attribute clarifies the purpose of the Bundle. Secondly,

1The word “Bundle” is a common jargon used by business analysts working with the first

author.

the iterations attribute, if the number is known at modeling time, specifies the number
of times the Bundle should execute.

Table 1 Task types and their attributes

DSML Task type Attributes Description
Business LB Bundle E5

B description A description of what is bundled
 iterations The number of iterations if it is known
Architect LA Loop E1

A iterations The number of iterations
 knownAtBuildTime Number of iterations is known at build time?

 Service
E2

A Name The name of the service to invoke

 Version The version of the service to invoke
Developer LD Assign E1

D Data mappings Mapping of data between variables
 Invoke E2

D WSDL Document describing the service to call
As illustrated in Table 2, the architectural pattern PT3

BA for modeling the equivalent
to a Bundle at the architectural level is a loop task type, and inside the loop, a service
task type is present. The loop task type requires values for two attributes to be
completely defined:
1. knownAtBuildTime: Boolean. True, if the iteration numbers is known at build time
2. number:= the number of times the iteration should run.
Both these attributes can be extracted from the attributes of the Bundle task, so no
additional information is required here.
The service task type also requires data for two attributes:
1. Service name:= The name of the service which the bundle invokes multiple times.
2. Service version:= The version of the service to be invoked.
These attributes cannot be extracted from the Bundle task type at the business level, as
they are information about the architecture of services in Estate Bank, so they must be
provided as additional parameters AP3

BA during the transformation. The business
analyst has only provided a description of the purpose of the task of type Bundle. The
architect uses his/her knowledge of Estate Banks services to describe which service
and what version to call and specify the attribute values of the service task. A sub
transformation T3

BA can be defined for transformation of the Bundle task type at the
business level to the architectural level. Table 2 shows the pattern template, a textual
description of the transformation rules and the required additional transformation
parameters. The Bundle sub transformation generates a model structure S3

A defined in
the architect language. This structure contains two tasks, one of type loop, and one of
type service. The structure can be transformed to the development level by use of two
different sub transformations, one sub transformation T1

AD for the loop task type and
one (T2

 AD) for the service task type.

Table 2 Sub transformation for Bundle task type from business to architectural level

Pattern template PT3
BA Add.params AP3

BA Rules

Service name
Service version

Set name and version
at <<Service>>
attribute

Table 3 illustrates that a loop task at the architectural level is transformed to an
assign task and a loop task at the development level. The service task at the
architectural level is transformed to a sequence of an assign task followed by an
invoke task at the development level.

The two assign nodes at the development level both need additional parameters for
determining how to map data for variables to the loop node and the invoke task
respectively. This information can be provided at modeling time, however since the
focus of the paper is on the control flow part of the models, we will not deal with this
aspect here.

The loop node requires a conditional statement (logic) to determine when is should
terminate. This is similar to the conditional statements, for example in “if” and
“while” clauses, in conventional programming languages. The invoke node need to
know the WSDL document defining the service to invoke. The logic and the
document have to be provided for the transformations as values of additional
parameters, VoAPj.

Table 3 Sub transformation of Service and Loop task type from architect to developer level

Task type Pattern template PTj
 AD Additional

params APj
 AD

Rules

Service

WSDL file Change the
invoke node to
use WSDL

Loop

logic Set iteration
number at loop

The described parameterized patterns allow the CreateLoans task, if modeled as a

Bundle type, to be transformed into code with only limited work done by the architect
and the developer. They only have to provide specific information during the
transformations. The architect has to provide the service name and version of the
service that in the IT systems fulfils the requirements specified by the business
analyst. The developer has to provide a WSDL document based on the service name
and version and logic for when the loop should terminate. Based on these additional
transformation parameters, the described sub transformations in Table 2 and Table 3
handle the rest of the work of transforming the business model to an implementation.
This is illustrated in Fig. 4.

Similarly, the other tasks, AssessRisk and Reject, of the mortgage process can be
transformed by other subtransformations to an implementation. Fig. 5 illustrates the
complete mortgage process transformed to the developers DSML where also the
AssessRisk and the Reject task has been transformed. The different Assign tasks are
used for mapping data for service invocations; for the AssessRisk service which is
handled by a human actor, for initializing the while loop for creating the different
loans requested by the customer, for the CreateLoan service which create one loan
and for the Reject service which sends a rejection to the customer.

Analyst Architect Developer

Business
2

Architect Architect2Developer

CreateLoans

<<Bundle>>

Additional Data
name=CREATELOAN
version=02

-name=CREATELOAN
-version=02

Additional Data
WSDL=createloan.wsdl

Compile BPEL

Fig. 4 Transformation of the CreateLoans task from analyst to architect to developer
to code.

map1 AssessRisk

Rejectmap2

map3
map4 CreateLoan

CreateLoans<<loop>>

<<assign>>

<<assign>>

<<assign>>

<<assign>> <<invoke>>

<<invoke>>

<<invoke>>

Fig. 5 Mortgage Approval process transformed to developer DSML

5. Discussion

As the example illustrates, the analyst and the architect are able to create precise,
machine-readable models in well known domain specific concepts by using languages
fitted specially for their needs. By using the suggested approach, i.e. having defined
sub transformations for the specific domain concepts, tools can now collect the
required information for the concrete tasks in a source models, automatically
transform the source model to the target domain and finally generate the
implementation code.

The model can be transformed to an implementation, where only required
additional transformation parameters have to be provided by the architect and the
developer. The developer and the architect are not required to remember or know all
details about the patterns and which additional parameters are required. For example,
the tool can provide assistance in form of wizards.

Following the gathering of information, the transformation of the task to the lower
abstraction level is carried out automatically. As a consequence, the challenge of
modeling and implementing business processes, then becomes one of identifying and

defining domain specific concepts, DSMLs and transformations between different
DSMLs.

An outcome and a possible limitation of the approach is that it is not possible to
introduce manual corrections to generated models. It is a subject to further research
how manual changes applied to generated models can survive repeatable
transformations

Due to space limitation, this paper only focuses on control flow part of the business
process. Modeling the flow of messages is equally important. For example in the
mortgage example it should be modeled which information that is provided to the
process and what information the different tasks require. Our approach can be
similarly used to model and transform the message flow of a business process.

6. Tool implementation of the approach

Our earlier paper [17] describes the tools ADModeler and ADSpecializer, which
enable the creation and use of DSMLs based on UML activity diagrams and profiles.
We are currently finalizing an extension of the above workbench by a new module
called ADTransformer, a transformation engine feasible for transforming models
based on different profiles for UML activity diagrams. ADTransformer implements
the concepts of sub transformations, parameterized patters, patterns templates,
transformation rules and additional parameters. Using the three tools together one is
able to define and utilize DSMLs, and define and use transformations between
different DSMLs.

7. Conclusion

This paper presents an approach for bridging the gap between business and IT by
facilitating better interaction between experts involved in business process modeling
and implementation. The main idea is to capture domain knowledge related to
different groups of experts as domain specific modeling languages and reusable,
parameterized transformation patterns. Using an example, the paper demonstrates that
domain specific modeling combined with customizable model transformations can
simplify the process of modeling and implementing business processes. Using our
tool-based approach will result in shorter time to market from business process idea to
implementation, higher quality of the resulting code based on automated
transformations, an assurance for what is conceptually modeled is actually also
implemented, and better interaction between different groups of experts.

References

1. Wagner, H.-T., Beimborn, D., Franke, J., Weitzel, T.: IT Business Alignment
and IT Usage in Operational Processes: A Retail Banking Case Proceedings

of the 39th Annual Hawaii International Conference on System Sciences
(HICSS'06). IEEE computer society (2006) 172-194

2. Arsanjani, A.: Empowering the business analyst for on demand computing
IBM Systems Journal 44 (2005) 67-80

3. BEA, IBM, Microsoft, SAP, A., Systems, S.: Business Process Execution
Language for Web Services. Version 1.1. (2003)

4. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven
Software Development: Technology, Engineering, Management. Wiley
(2006)

5. Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring
infrastructure for domain-specific modeling languages. EMSOFT '05:
Proceedings of the 5th ACM international conference on Embedded
software. ACM (2005) 35-43

6. Deursen, A.V., Klint, P., Visser, J.: Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices 35 (2000) 26-36

7. White, S.: Business Process Modeling Notation, Version 1.0,
http://www.bpmn.org/Documents/BPMN%20V1-
0%20May%203%202004.pdf May 2004. Last accessed 29 Jan. 2006. (2004)

8. UML2.0: UML 2.0 Superstructure Specification, Final Adopted
Specification, available at www.omg.org. (2003)

9. Stahl, T., Völter, M.: Model Driven Software Development; technology
engineering management. Wiley (2006)

10. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture--Practice and Promise. Addison-Wesley (2003)

11. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in
Mapping Web Services to Implementation Platforms. Technical report:
04.01. LINA, University of Nantes, Nantes, France (2004)

12. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in
Web Services. Conceptual Modelling for Advanced Application Domain,
Proceeding of the eCOMO, Vol. 3289. Springer Verlag, Shanghai, China
(2004) 667-678

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley (1994)

14. Eriksson, H.E., Penker, M.: Business Modeling with UML. Business Patterns
at Work. John Wiley & Sons, Inc. (2000)

15. van der Aalst, W.M.P., Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5-51

16. MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S., Tan, K.:
Generative design patterns. IEEE International Conference on Automated
Software Engineering (2002) 23-34

17. Brahe, S., Østerbye, K.: Business Process Modeling: Defining Domain
Specific Modeling Languages by use of UML Profiles Second European
Conference on Model Driven Architecture – Foundations and Applications,
Vol. 4066. Springer Berlin / Heidelberg (2006) 241-255

http://www.bpmn.org/
http://www.omg.org/
http://www.omg.org/

